Optical Analysis of Nanosecond-Lifetime Plasma Parameters
We present observations and modeling of argon gas at pressures of a few Torr that have been excited with high-voltage pulses (hundreds of volts) on the order of nanoseconds in duration. These tests are motivated by an effort to determine the feasibility of utilizing pulsed argon plasma as a conducti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2020-01, Vol.48 (1), p.179-188 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 1 |
container_start_page | 179 |
container_title | IEEE transactions on plasma science |
container_volume | 48 |
creator | Singletary, Parker J. Cohen, Morris B. Walker, Mitchell L. R. Liu, Connie Y. Chan, Cheong Y. |
description | We present observations and modeling of argon gas at pressures of a few Torr that have been excited with high-voltage pulses (hundreds of volts) on the order of nanoseconds in duration. These tests are motivated by an effort to determine the feasibility of utilizing pulsed argon plasma as a conducting media in a novel antenna configuration. A vacuum chamber is constructed with plate electrodes inserted. An optical observation system is constructed to observe the temporal response. The rise time and fall time of the plasma's optical emissions, taken as a proxy of the electron density, are measured as a function of pulse voltage and pressure using the captured optical light curve. In addition, spectroscopy measurements are made on a longer time scale. The maximum electron density of the plasma is then inferred through the use of PrismSPECT, a commercially available collisional radiative model, via the line ratio method. Measured pulsed plasmas reached their maximum ionization in as low as 5 ns and recombine in as low as 140 ns. Spectral measurements show that a 1-Torr plasma ionized with 5-ns long pulses had a maximum electron density of 5.2 × 10 20 /m 3 and maximum electron temperature of 1.28 eV. |
doi_str_mv | 10.1109/TPS.2019.2954908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2345511947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8930084</ieee_id><sourcerecordid>2345511947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5f8ca71705a93e0352eaca9806ee9de7414bfaa8b840c176546f273d644b99e03</originalsourceid><addsrcrecordid>eNo9kM1rwkAQR5fSQq3tvdBLoOfY2a_szlGkXyBVqD0vY5xAJDF2Nx787xtReprLez-GJ8SjhImUgC-r5fdEgcSJQmsQ_JUYSdSYo3b2WowAUOfaS30r7lLaAkhjQY0ELvZ9XVKTTXfUHFOdsq7KvmjXJS673Saf1xX3dcvZsqHUUrakSC33HNO9uKmoSfxwuWPx8_a6mn3k88X752w6z0uFss9t5Uty0oEl1AzaKqaS0EPBjBt2Rpp1ReTX3kApXWFNUSmnN4Uxa8RBGIvn8-4-dr8HTn3Ydoc4fJuC0sZaKdG4gYIzVcYupchV2Me6pXgMEsIpUBgChVOgcAk0KE9npWbmf9yjBvBG_wGCumBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345511947</pqid></control><display><type>article</type><title>Optical Analysis of Nanosecond-Lifetime Plasma Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Singletary, Parker J. ; Cohen, Morris B. ; Walker, Mitchell L. R. ; Liu, Connie Y. ; Chan, Cheong Y.</creator><creatorcontrib>Singletary, Parker J. ; Cohen, Morris B. ; Walker, Mitchell L. R. ; Liu, Connie Y. ; Chan, Cheong Y.</creatorcontrib><description>We present observations and modeling of argon gas at pressures of a few Torr that have been excited with high-voltage pulses (hundreds of volts) on the order of nanoseconds in duration. These tests are motivated by an effort to determine the feasibility of utilizing pulsed argon plasma as a conducting media in a novel antenna configuration. A vacuum chamber is constructed with plate electrodes inserted. An optical observation system is constructed to observe the temporal response. The rise time and fall time of the plasma's optical emissions, taken as a proxy of the electron density, are measured as a function of pulse voltage and pressure using the captured optical light curve. In addition, spectroscopy measurements are made on a longer time scale. The maximum electron density of the plasma is then inferred through the use of PrismSPECT, a commercially available collisional radiative model, via the line ratio method. Measured pulsed plasmas reached their maximum ionization in as low as 5 ns and recombine in as low as 140 ns. Spectral measurements show that a 1-Torr plasma ionized with 5-ns long pulses had a maximum electron density of 5.2 × 10 20 /m 3 and maximum electron temperature of 1.28 eV.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2019.2954908</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna ; Argon ; Argon plasma ; Density ; Electrodes ; Electron density ; Electron energy ; Ionization ; Light curve ; low frequency (LF) ; nanosecond ionization ; Optical analysis ; optical measurements ; Optical variables measurement ; Plasma ; Plasma measurements ; Plasmas ; PrismSPECT ; Pulse measurements ; Vacuum chambers ; very LF (VLF) ; Voltage measurement ; Voltage pulses</subject><ispartof>IEEE transactions on plasma science, 2020-01, Vol.48 (1), p.179-188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5f8ca71705a93e0352eaca9806ee9de7414bfaa8b840c176546f273d644b99e03</citedby><cites>FETCH-LOGICAL-c291t-5f8ca71705a93e0352eaca9806ee9de7414bfaa8b840c176546f273d644b99e03</cites><orcidid>0000-0003-2489-3758 ; 0000-0002-2643-0565 ; 0000-0002-7920-5759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8930084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8930084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singletary, Parker J.</creatorcontrib><creatorcontrib>Cohen, Morris B.</creatorcontrib><creatorcontrib>Walker, Mitchell L. R.</creatorcontrib><creatorcontrib>Liu, Connie Y.</creatorcontrib><creatorcontrib>Chan, Cheong Y.</creatorcontrib><title>Optical Analysis of Nanosecond-Lifetime Plasma Parameters</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We present observations and modeling of argon gas at pressures of a few Torr that have been excited with high-voltage pulses (hundreds of volts) on the order of nanoseconds in duration. These tests are motivated by an effort to determine the feasibility of utilizing pulsed argon plasma as a conducting media in a novel antenna configuration. A vacuum chamber is constructed with plate electrodes inserted. An optical observation system is constructed to observe the temporal response. The rise time and fall time of the plasma's optical emissions, taken as a proxy of the electron density, are measured as a function of pulse voltage and pressure using the captured optical light curve. In addition, spectroscopy measurements are made on a longer time scale. The maximum electron density of the plasma is then inferred through the use of PrismSPECT, a commercially available collisional radiative model, via the line ratio method. Measured pulsed plasmas reached their maximum ionization in as low as 5 ns and recombine in as low as 140 ns. Spectral measurements show that a 1-Torr plasma ionized with 5-ns long pulses had a maximum electron density of 5.2 × 10 20 /m 3 and maximum electron temperature of 1.28 eV.</description><subject>Antenna</subject><subject>Argon</subject><subject>Argon plasma</subject><subject>Density</subject><subject>Electrodes</subject><subject>Electron density</subject><subject>Electron energy</subject><subject>Ionization</subject><subject>Light curve</subject><subject>low frequency (LF)</subject><subject>nanosecond ionization</subject><subject>Optical analysis</subject><subject>optical measurements</subject><subject>Optical variables measurement</subject><subject>Plasma</subject><subject>Plasma measurements</subject><subject>Plasmas</subject><subject>PrismSPECT</subject><subject>Pulse measurements</subject><subject>Vacuum chambers</subject><subject>very LF (VLF)</subject><subject>Voltage measurement</subject><subject>Voltage pulses</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rwkAQR5fSQq3tvdBLoOfY2a_szlGkXyBVqD0vY5xAJDF2Nx787xtReprLez-GJ8SjhImUgC-r5fdEgcSJQmsQ_JUYSdSYo3b2WowAUOfaS30r7lLaAkhjQY0ELvZ9XVKTTXfUHFOdsq7KvmjXJS673Saf1xX3dcvZsqHUUrakSC33HNO9uKmoSfxwuWPx8_a6mn3k88X752w6z0uFss9t5Uty0oEl1AzaKqaS0EPBjBt2Rpp1ReTX3kApXWFNUSmnN4Uxa8RBGIvn8-4-dr8HTn3Ydoc4fJuC0sZaKdG4gYIzVcYupchV2Me6pXgMEsIpUBgChVOgcAk0KE9npWbmf9yjBvBG_wGCumBQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Singletary, Parker J.</creator><creator>Cohen, Morris B.</creator><creator>Walker, Mitchell L. R.</creator><creator>Liu, Connie Y.</creator><creator>Chan, Cheong Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2489-3758</orcidid><orcidid>https://orcid.org/0000-0002-2643-0565</orcidid><orcidid>https://orcid.org/0000-0002-7920-5759</orcidid></search><sort><creationdate>202001</creationdate><title>Optical Analysis of Nanosecond-Lifetime Plasma Parameters</title><author>Singletary, Parker J. ; Cohen, Morris B. ; Walker, Mitchell L. R. ; Liu, Connie Y. ; Chan, Cheong Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5f8ca71705a93e0352eaca9806ee9de7414bfaa8b840c176546f273d644b99e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antenna</topic><topic>Argon</topic><topic>Argon plasma</topic><topic>Density</topic><topic>Electrodes</topic><topic>Electron density</topic><topic>Electron energy</topic><topic>Ionization</topic><topic>Light curve</topic><topic>low frequency (LF)</topic><topic>nanosecond ionization</topic><topic>Optical analysis</topic><topic>optical measurements</topic><topic>Optical variables measurement</topic><topic>Plasma</topic><topic>Plasma measurements</topic><topic>Plasmas</topic><topic>PrismSPECT</topic><topic>Pulse measurements</topic><topic>Vacuum chambers</topic><topic>very LF (VLF)</topic><topic>Voltage measurement</topic><topic>Voltage pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singletary, Parker J.</creatorcontrib><creatorcontrib>Cohen, Morris B.</creatorcontrib><creatorcontrib>Walker, Mitchell L. R.</creatorcontrib><creatorcontrib>Liu, Connie Y.</creatorcontrib><creatorcontrib>Chan, Cheong Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singletary, Parker J.</au><au>Cohen, Morris B.</au><au>Walker, Mitchell L. R.</au><au>Liu, Connie Y.</au><au>Chan, Cheong Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Analysis of Nanosecond-Lifetime Plasma Parameters</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2020-01</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>179</spage><epage>188</epage><pages>179-188</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We present observations and modeling of argon gas at pressures of a few Torr that have been excited with high-voltage pulses (hundreds of volts) on the order of nanoseconds in duration. These tests are motivated by an effort to determine the feasibility of utilizing pulsed argon plasma as a conducting media in a novel antenna configuration. A vacuum chamber is constructed with plate electrodes inserted. An optical observation system is constructed to observe the temporal response. The rise time and fall time of the plasma's optical emissions, taken as a proxy of the electron density, are measured as a function of pulse voltage and pressure using the captured optical light curve. In addition, spectroscopy measurements are made on a longer time scale. The maximum electron density of the plasma is then inferred through the use of PrismSPECT, a commercially available collisional radiative model, via the line ratio method. Measured pulsed plasmas reached their maximum ionization in as low as 5 ns and recombine in as low as 140 ns. Spectral measurements show that a 1-Torr plasma ionized with 5-ns long pulses had a maximum electron density of 5.2 × 10 20 /m 3 and maximum electron temperature of 1.28 eV.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2019.2954908</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2489-3758</orcidid><orcidid>https://orcid.org/0000-0002-2643-0565</orcidid><orcidid>https://orcid.org/0000-0002-7920-5759</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2020-01, Vol.48 (1), p.179-188 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_2345511947 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna Argon Argon plasma Density Electrodes Electron density Electron energy Ionization Light curve low frequency (LF) nanosecond ionization Optical analysis optical measurements Optical variables measurement Plasma Plasma measurements Plasmas PrismSPECT Pulse measurements Vacuum chambers very LF (VLF) Voltage measurement Voltage pulses |
title | Optical Analysis of Nanosecond-Lifetime Plasma Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Analysis%20of%20Nanosecond-Lifetime%20Plasma%20Parameters&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Singletary,%20Parker%20J.&rft.date=2020-01&rft.volume=48&rft.issue=1&rft.spage=179&rft.epage=188&rft.pages=179-188&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2019.2954908&rft_dat=%3Cproquest_RIE%3E2345511947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345511947&rft_id=info:pmid/&rft_ieee_id=8930084&rfr_iscdi=true |