Online Measuring and Size Sorting for Perillae Based on Machine Vision

Perillae has attracted an increasing interest of study due to its wide usage for medicine and food. Estimating quality and maturity of a perillae requires the information with respect to its size. At present, measuring and sorting the size of perillae mainly depend on manual work, which is limited b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2020, Vol.2020 (2020), p.1-8
Hauptverfasser: Jiang, Hanlu, Dong, Xin, Li, Yashuo, Zhao, Rongqiang, Fu, Jun, Wang, Ye, Zhao, Bo, Lv, Chengxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2020
container_start_page 1
container_title Journal of sensors
container_volume 2020
creator Jiang, Hanlu
Dong, Xin
Li, Yashuo
Zhao, Rongqiang
Fu, Jun
Wang, Ye
Zhao, Bo
Lv, Chengxu
description Perillae has attracted an increasing interest of study due to its wide usage for medicine and food. Estimating quality and maturity of a perillae requires the information with respect to its size. At present, measuring and sorting the size of perillae mainly depend on manual work, which is limited by low efficiency and unsatisfied accuracy. To address this issue, in this study, we develop an approach based on the machine vision (MV) technique for online measuring and size sorting. The geometrical model and the corresponding mathematical model are built for perillae and imaging, respectively. Based on the built models, the measuring and size sorting method is proposed, including image binarization, key point determination, information matching, and parameter estimation. Experimental results demonstrate that the average time consumption for a captured image, the average measuring error, the variance of measuring error, and the overall sorting accuracy are 204.175 ms, 1.48 mm, 0.07 mm, and 93%, respectively, implying the feasibility and satisfied accuracy of the proposed approach.
doi_str_mv 10.1155/2020/3125708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2345454754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2345454754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-876e218f6283aef9c25082a794bbcfd73b6fb9ccb61ce95f9580d231286263f73</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdfjQ_etSxqbAxYSreSpommlHTmWyI_vWmdOhRckgIn_ce7wvAKUZXGDM2IoigEcWECST3wABzKTJBuNz_fbOXQ3AU4wohTgWlAzBd-MZ5A-dGxW1w_hUqX8Ol-zZw2YZN92HbAB9McE2jDLxR0dSw9XCu9FtX-Oyia_0xOLCqieZkdw_B03TyOL7LZovb-_H1LNM5EZtMCm4IlpYTSZWxhSYMSaJEkVeVtrWgFbdVoXXFsTYFswWTqCZpI8kJp1bQITjv-65D-7E1cVOu2m3waWRJaM7SESxP6rJXOrQxBmPLdXDvKnyVGJVdUmWXVLlLKvGLnqeFavXp_tNnvTbJGKv-NC4QLQj9AQTqcGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345454754</pqid></control><display><type>article</type><title>Online Measuring and Size Sorting for Perillae Based on Machine Vision</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Jiang, Hanlu ; Dong, Xin ; Li, Yashuo ; Zhao, Rongqiang ; Fu, Jun ; Wang, Ye ; Zhao, Bo ; Lv, Chengxu</creator><contributor>Li, Yuan ; Yuan Li</contributor><creatorcontrib>Jiang, Hanlu ; Dong, Xin ; Li, Yashuo ; Zhao, Rongqiang ; Fu, Jun ; Wang, Ye ; Zhao, Bo ; Lv, Chengxu ; Li, Yuan ; Yuan Li</creatorcontrib><description>Perillae has attracted an increasing interest of study due to its wide usage for medicine and food. Estimating quality and maturity of a perillae requires the information with respect to its size. At present, measuring and sorting the size of perillae mainly depend on manual work, which is limited by low efficiency and unsatisfied accuracy. To address this issue, in this study, we develop an approach based on the machine vision (MV) technique for online measuring and size sorting. The geometrical model and the corresponding mathematical model are built for perillae and imaging, respectively. Based on the built models, the measuring and size sorting method is proposed, including image binarization, key point determination, information matching, and parameter estimation. Experimental results demonstrate that the average time consumption for a captured image, the average measuring error, the variance of measuring error, and the overall sorting accuracy are 204.175 ms, 1.48 mm, 0.07 mm, and 93%, respectively, implying the feasibility and satisfied accuracy of the proposed approach.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2020/3125708</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Calibration ; Error analysis ; Food ; Geometry ; Machine vision ; Mathematical models ; Parameter estimation ; Vision systems</subject><ispartof>Journal of sensors, 2020, Vol.2020 (2020), p.1-8</ispartof><rights>Copyright © 2020 Bo Zhao et al.</rights><rights>Copyright © 2020 Bo Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-876e218f6283aef9c25082a794bbcfd73b6fb9ccb61ce95f9580d231286263f73</citedby><cites>FETCH-LOGICAL-c427t-876e218f6283aef9c25082a794bbcfd73b6fb9ccb61ce95f9580d231286263f73</cites><orcidid>0000-0002-6810-6595 ; 0000-0003-0131-9542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Li, Yuan</contributor><contributor>Yuan Li</contributor><creatorcontrib>Jiang, Hanlu</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Li, Yashuo</creatorcontrib><creatorcontrib>Zhao, Rongqiang</creatorcontrib><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Lv, Chengxu</creatorcontrib><title>Online Measuring and Size Sorting for Perillae Based on Machine Vision</title><title>Journal of sensors</title><description>Perillae has attracted an increasing interest of study due to its wide usage for medicine and food. Estimating quality and maturity of a perillae requires the information with respect to its size. At present, measuring and sorting the size of perillae mainly depend on manual work, which is limited by low efficiency and unsatisfied accuracy. To address this issue, in this study, we develop an approach based on the machine vision (MV) technique for online measuring and size sorting. The geometrical model and the corresponding mathematical model are built for perillae and imaging, respectively. Based on the built models, the measuring and size sorting method is proposed, including image binarization, key point determination, information matching, and parameter estimation. Experimental results demonstrate that the average time consumption for a captured image, the average measuring error, the variance of measuring error, and the overall sorting accuracy are 204.175 ms, 1.48 mm, 0.07 mm, and 93%, respectively, implying the feasibility and satisfied accuracy of the proposed approach.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Error analysis</subject><subject>Food</subject><subject>Geometry</subject><subject>Machine vision</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Vision systems</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdfjQ_etSxqbAxYSreSpommlHTmWyI_vWmdOhRckgIn_ce7wvAKUZXGDM2IoigEcWECST3wABzKTJBuNz_fbOXQ3AU4wohTgWlAzBd-MZ5A-dGxW1w_hUqX8Ol-zZw2YZN92HbAB9McE2jDLxR0dSw9XCu9FtX-Oyia_0xOLCqieZkdw_B03TyOL7LZovb-_H1LNM5EZtMCm4IlpYTSZWxhSYMSaJEkVeVtrWgFbdVoXXFsTYFswWTqCZpI8kJp1bQITjv-65D-7E1cVOu2m3waWRJaM7SESxP6rJXOrQxBmPLdXDvKnyVGJVdUmWXVLlLKvGLnqeFavXp_tNnvTbJGKv-NC4QLQj9AQTqcGA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jiang, Hanlu</creator><creator>Dong, Xin</creator><creator>Li, Yashuo</creator><creator>Zhao, Rongqiang</creator><creator>Fu, Jun</creator><creator>Wang, Ye</creator><creator>Zhao, Bo</creator><creator>Lv, Chengxu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6810-6595</orcidid><orcidid>https://orcid.org/0000-0003-0131-9542</orcidid></search><sort><creationdate>2020</creationdate><title>Online Measuring and Size Sorting for Perillae Based on Machine Vision</title><author>Jiang, Hanlu ; Dong, Xin ; Li, Yashuo ; Zhao, Rongqiang ; Fu, Jun ; Wang, Ye ; Zhao, Bo ; Lv, Chengxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-876e218f6283aef9c25082a794bbcfd73b6fb9ccb61ce95f9580d231286263f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Error analysis</topic><topic>Food</topic><topic>Geometry</topic><topic>Machine vision</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hanlu</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Li, Yashuo</creatorcontrib><creatorcontrib>Zhao, Rongqiang</creatorcontrib><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Lv, Chengxu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hanlu</au><au>Dong, Xin</au><au>Li, Yashuo</au><au>Zhao, Rongqiang</au><au>Fu, Jun</au><au>Wang, Ye</au><au>Zhao, Bo</au><au>Lv, Chengxu</au><au>Li, Yuan</au><au>Yuan Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Measuring and Size Sorting for Perillae Based on Machine Vision</atitle><jtitle>Journal of sensors</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Perillae has attracted an increasing interest of study due to its wide usage for medicine and food. Estimating quality and maturity of a perillae requires the information with respect to its size. At present, measuring and sorting the size of perillae mainly depend on manual work, which is limited by low efficiency and unsatisfied accuracy. To address this issue, in this study, we develop an approach based on the machine vision (MV) technique for online measuring and size sorting. The geometrical model and the corresponding mathematical model are built for perillae and imaging, respectively. Based on the built models, the measuring and size sorting method is proposed, including image binarization, key point determination, information matching, and parameter estimation. Experimental results demonstrate that the average time consumption for a captured image, the average measuring error, the variance of measuring error, and the overall sorting accuracy are 204.175 ms, 1.48 mm, 0.07 mm, and 93%, respectively, implying the feasibility and satisfied accuracy of the proposed approach.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3125708</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6810-6595</orcidid><orcidid>https://orcid.org/0000-0003-0131-9542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2020, Vol.2020 (2020), p.1-8
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2345454754
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Accuracy
Calibration
Error analysis
Food
Geometry
Machine vision
Mathematical models
Parameter estimation
Vision systems
title Online Measuring and Size Sorting for Perillae Based on Machine Vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Measuring%20and%20Size%20Sorting%20for%20Perillae%20Based%20on%20Machine%20Vision&rft.jtitle=Journal%20of%20sensors&rft.au=Jiang,%20Hanlu&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2020/3125708&rft_dat=%3Cproquest_cross%3E2345454754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345454754&rft_id=info:pmid/&rfr_iscdi=true