Linear complexity of generalized sequences by comparison of PN-sequences
Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
container_volume | 114 |
creator | Fúster-Sabater, Amparo Cardell, Sara D. |
description | Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation. |
doi_str_mv | 10.1007/s13398-020-00807-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344980103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344980103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJstlsjlLUFop60HPIZidlS7tbky24_nrTrujNuczAfO89eIRcM7hlAOouMiF0SYEDBShBUXlGJkwqTZkEeX66S6oEiEsyi3EDaQTLEzkhi1XTog2Z63b7LX42_ZB1Pltji8Fumy-ss4gfB2wdxqwaTpgNTezaI_b6TH-_V-TC223E2c-ekvfHh7f5gq5enpbz-xV1ohA9LawvraoYFF7LquBMOuWVy7nm3Fe1Vo4XyKvKO-vKXDOtao4CuVC1hlrlYkpuRt996FJ07M2mO4Q2RRou8lyXwEAkio-UC12MAb3Zh2Znw2AYmGNpZizNpNLMqTQjk0iMopjgdo3hz_of1TdVaG8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344980103</pqid></control><display><type>article</type><title>Linear complexity of generalized sequences by comparison of PN-sequences</title><source>Springer Nature - Complete Springer Journals</source><creator>Fúster-Sabater, Amparo ; Cardell, Sara D.</creator><creatorcontrib>Fúster-Sabater, Amparo ; Cardell, Sara D.</creatorcontrib><description>Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-020-00807-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Communications systems ; Complexity ; Computation ; Cryptography ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 79</ispartof><rights>The Royal Academy of Sciences, Madrid 2020</rights><rights>The Royal Academy of Sciences, Madrid 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</citedby><cites>FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-020-00807-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-020-00807-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fúster-Sabater, Amparo</creatorcontrib><creatorcontrib>Cardell, Sara D.</creatorcontrib><title>Linear complexity of generalized sequences by comparison of PN-sequences</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.</description><subject>Applications of Mathematics</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Computation</subject><subject>Cryptography</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJstlsjlLUFop60HPIZidlS7tbky24_nrTrujNuczAfO89eIRcM7hlAOouMiF0SYEDBShBUXlGJkwqTZkEeX66S6oEiEsyi3EDaQTLEzkhi1XTog2Z63b7LX42_ZB1Pltji8Fumy-ss4gfB2wdxqwaTpgNTezaI_b6TH-_V-TC223E2c-ekvfHh7f5gq5enpbz-xV1ohA9LawvraoYFF7LquBMOuWVy7nm3Fe1Vo4XyKvKO-vKXDOtao4CuVC1hlrlYkpuRt996FJ07M2mO4Q2RRou8lyXwEAkio-UC12MAb3Zh2Znw2AYmGNpZizNpNLMqTQjk0iMopjgdo3hz_of1TdVaG8U</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Fúster-Sabater, Amparo</creator><creator>Cardell, Sara D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Linear complexity of generalized sequences by comparison of PN-sequences</title><author>Fúster-Sabater, Amparo ; Cardell, Sara D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Computation</topic><topic>Cryptography</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fúster-Sabater, Amparo</creatorcontrib><creatorcontrib>Cardell, Sara D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fúster-Sabater, Amparo</au><au>Cardell, Sara D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear complexity of generalized sequences by comparison of PN-sequences</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>114</volume><issue>2</issue><artnum>79</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-020-00807-5</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1578-7303 |
ispartof | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 79 |
issn | 1578-7303 1579-1505 |
language | eng |
recordid | cdi_proquest_journals_2344980103 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Communications systems Complexity Computation Cryptography Mathematical and Computational Physics Mathematics Mathematics and Statistics Original Paper Theoretical |
title | Linear complexity of generalized sequences by comparison of PN-sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20complexity%20of%20generalized%20sequences%20by%20comparison%20of%20PN-sequences&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=F%C3%BAster-Sabater,%20Amparo&rft.date=2020-04-01&rft.volume=114&rft.issue=2&rft.artnum=79&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-020-00807-5&rft_dat=%3Cproquest_cross%3E2344980103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344980103&rft_id=info:pmid/&rfr_iscdi=true |