Linear complexity of generalized sequences by comparison of PN-sequences

Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 79
Hauptverfasser: Fúster-Sabater, Amparo, Cardell, Sara D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 114
creator Fúster-Sabater, Amparo
Cardell, Sara D.
description Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.
doi_str_mv 10.1007/s13398-020-00807-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344980103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344980103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJstlsjlLUFop60HPIZidlS7tbky24_nrTrujNuczAfO89eIRcM7hlAOouMiF0SYEDBShBUXlGJkwqTZkEeX66S6oEiEsyi3EDaQTLEzkhi1XTog2Z63b7LX42_ZB1Pltji8Fumy-ss4gfB2wdxqwaTpgNTezaI_b6TH-_V-TC223E2c-ekvfHh7f5gq5enpbz-xV1ohA9LawvraoYFF7LquBMOuWVy7nm3Fe1Vo4XyKvKO-vKXDOtao4CuVC1hlrlYkpuRt996FJ07M2mO4Q2RRou8lyXwEAkio-UC12MAb3Zh2Znw2AYmGNpZizNpNLMqTQjk0iMopjgdo3hz_of1TdVaG8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344980103</pqid></control><display><type>article</type><title>Linear complexity of generalized sequences by comparison of PN-sequences</title><source>Springer Nature - Complete Springer Journals</source><creator>Fúster-Sabater, Amparo ; Cardell, Sara D.</creator><creatorcontrib>Fúster-Sabater, Amparo ; Cardell, Sara D.</creatorcontrib><description>Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-020-00807-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Communications systems ; Complexity ; Computation ; Cryptography ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 79</ispartof><rights>The Royal Academy of Sciences, Madrid 2020</rights><rights>The Royal Academy of Sciences, Madrid 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</citedby><cites>FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-020-00807-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-020-00807-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fúster-Sabater, Amparo</creatorcontrib><creatorcontrib>Cardell, Sara D.</creatorcontrib><title>Linear complexity of generalized sequences by comparison of PN-sequences</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.</description><subject>Applications of Mathematics</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Computation</subject><subject>Cryptography</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFz9FJstlsjlLUFop60HPIZidlS7tbky24_nrTrujNuczAfO89eIRcM7hlAOouMiF0SYEDBShBUXlGJkwqTZkEeX66S6oEiEsyi3EDaQTLEzkhi1XTog2Z63b7LX42_ZB1Pltji8Fumy-ss4gfB2wdxqwaTpgNTezaI_b6TH-_V-TC223E2c-ekvfHh7f5gq5enpbz-xV1ohA9LawvraoYFF7LquBMOuWVy7nm3Fe1Vo4XyKvKO-vKXDOtao4CuVC1hlrlYkpuRt996FJ07M2mO4Q2RRou8lyXwEAkio-UC12MAb3Zh2Znw2AYmGNpZizNpNLMqTQjk0iMopjgdo3hz_of1TdVaG8U</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Fúster-Sabater, Amparo</creator><creator>Cardell, Sara D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Linear complexity of generalized sequences by comparison of PN-sequences</title><author>Fúster-Sabater, Amparo ; Cardell, Sara D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6af8a7b106f95b6215c7f7c42922fbd97c26e2bbfcac849197d2e3e237d90d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Computation</topic><topic>Cryptography</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fúster-Sabater, Amparo</creatorcontrib><creatorcontrib>Cardell, Sara D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fúster-Sabater, Amparo</au><au>Cardell, Sara D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear complexity of generalized sequences by comparison of PN-sequences</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>114</volume><issue>2</issue><artnum>79</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-020-00807-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2020-04, Vol.114 (2), Article 79
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2344980103
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Communications systems
Complexity
Computation
Cryptography
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Theoretical
title Linear complexity of generalized sequences by comparison of PN-sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20complexity%20of%20generalized%20sequences%20by%20comparison%20of%20PN-sequences&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=F%C3%BAster-Sabater,%20Amparo&rft.date=2020-04-01&rft.volume=114&rft.issue=2&rft.artnum=79&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-020-00807-5&rft_dat=%3Cproquest_cross%3E2344980103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344980103&rft_id=info:pmid/&rfr_iscdi=true