Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media
The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained,...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2018, Vol.121 (2), p.353-368 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 2 |
container_start_page | 353 |
container_title | Transport in porous media |
container_volume | 121 |
creator | Hyväluoma, Jari Niemi, Vesa Thapaliya, Mahesh Turtola, Eila Järnstedt, Jorma Timonen, Jussi |
description | The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography. |
doi_str_mv | 10.1007/s11242-017-0967-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344555876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344555876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxDr6AO5IXKMwDAyz1MZqk3pJqnFJKDA6zRQqMDH69NKMiSvdnLP5v3P5ADgl-JxgXF9EQsqqRJjUCDc8lz0wIaymiHBa7YMJJrxBtCH0EBzFuMY4U6KagPuFSqnTFl75Pn1tlHNw2W2GXqXOO-hbOOv9B5o7M2hr4Ivqe7h8syrAZQo2Rtg5-OiDHyK8s6ZTx-CgVX20Jz-9AM-z66fpLVo83MynlwukKK9TPqTEVGAhiDINpYwYxZoaW8qpNZqtqhU3QlPDcatKrXibX9SZ0XZlFW84LcDZOHcb_PtgY5JrPwSXV8qSVhVjTNT_p_L7TUlFNlIAMqZ08DEG28pt6DYqfEqC5U6uHOXKLFfu5EqcmXJkYs66Vxt-J_8NfQNrZ3px</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344555876</pqid></control><display><type>article</type><title>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</title><source>SpringerNature Journals</source><creator>Hyväluoma, Jari ; Niemi, Vesa ; Thapaliya, Mahesh ; Turtola, Eila ; Järnstedt, Jorma ; Timonen, Jussi</creator><creatorcontrib>Hyväluoma, Jari ; Niemi, Vesa ; Thapaliya, Mahesh ; Turtola, Eila ; Järnstedt, Jorma ; Timonen, Jussi</creatorcontrib><description>The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0967-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Flow simulation ; Geometry ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Image reconstruction ; Industrial Chemistry/Chemical Engineering ; Porous media ; Shear flow ; Shear stress ; Simulation ; Tomography ; Wall shear stresses ; X ray imagery</subject><ispartof>Transport in porous media, 2018, Vol.121 (2), p.353-368</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</citedby><cites>FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</cites><orcidid>0000-0003-1113-439X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0967-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0967-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Niemi, Vesa</creatorcontrib><creatorcontrib>Thapaliya, Mahesh</creatorcontrib><creatorcontrib>Turtola, Eila</creatorcontrib><creatorcontrib>Järnstedt, Jorma</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><title>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flow simulation</subject><subject>Geometry</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Image reconstruction</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Porous media</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Tomography</subject><subject>Wall shear stresses</subject><subject>X ray imagery</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOAyEUhonRxDr6AO5IXKMwDAyz1MZqk3pJqnFJKDA6zRQqMDH69NKMiSvdnLP5v3P5ADgl-JxgXF9EQsqqRJjUCDc8lz0wIaymiHBa7YMJJrxBtCH0EBzFuMY4U6KagPuFSqnTFl75Pn1tlHNw2W2GXqXOO-hbOOv9B5o7M2hr4Ivqe7h8syrAZQo2Rtg5-OiDHyK8s6ZTx-CgVX20Jz-9AM-z66fpLVo83MynlwukKK9TPqTEVGAhiDINpYwYxZoaW8qpNZqtqhU3QlPDcatKrXibX9SZ0XZlFW84LcDZOHcb_PtgY5JrPwSXV8qSVhVjTNT_p_L7TUlFNlIAMqZ08DEG28pt6DYqfEqC5U6uHOXKLFfu5EqcmXJkYs66Vxt-J_8NfQNrZ3px</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Hyväluoma, Jari</creator><creator>Niemi, Vesa</creator><creator>Thapaliya, Mahesh</creator><creator>Turtola, Eila</creator><creator>Järnstedt, Jorma</creator><creator>Timonen, Jussi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1113-439X</orcidid></search><sort><creationdate>2018</creationdate><title>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</title><author>Hyväluoma, Jari ; Niemi, Vesa ; Thapaliya, Mahesh ; Turtola, Eila ; Järnstedt, Jorma ; Timonen, Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flow simulation</topic><topic>Geometry</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Image reconstruction</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Porous media</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Tomography</topic><topic>Wall shear stresses</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Niemi, Vesa</creatorcontrib><creatorcontrib>Thapaliya, Mahesh</creatorcontrib><creatorcontrib>Turtola, Eila</creatorcontrib><creatorcontrib>Järnstedt, Jorma</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyväluoma, Jari</au><au>Niemi, Vesa</au><au>Thapaliya, Mahesh</au><au>Turtola, Eila</au><au>Järnstedt, Jorma</au><au>Timonen, Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2018</date><risdate>2018</risdate><volume>121</volume><issue>2</issue><spage>353</spage><epage>368</epage><pages>353-368</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0967-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1113-439X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2018, Vol.121 (2), p.353-368 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2344555876 |
source | SpringerNature Journals |
subjects | Civil Engineering Classical and Continuum Physics Computational fluid dynamics Computer simulation Earth and Environmental Science Earth Sciences Flow simulation Geometry Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Image reconstruction Industrial Chemistry/Chemical Engineering Porous media Shear flow Shear stress Simulation Tomography Wall shear stresses X ray imagery |
title | Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20Simulation%20of%20Flow-Induced%20Wall%20Shear%20Stress%20in%20Porous%20Media&rft.jtitle=Transport%20in%20porous%20media&rft.au=Hyv%C3%A4luoma,%20Jari&rft.date=2018&rft.volume=121&rft.issue=2&rft.spage=353&rft.epage=368&rft.pages=353-368&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0967-0&rft_dat=%3Cproquest_cross%3E2344555876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344555876&rft_id=info:pmid/&rfr_iscdi=true |