Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media

The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2018, Vol.121 (2), p.353-368
Hauptverfasser: Hyväluoma, Jari, Niemi, Vesa, Thapaliya, Mahesh, Turtola, Eila, Järnstedt, Jorma, Timonen, Jussi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 2
container_start_page 353
container_title Transport in porous media
container_volume 121
creator Hyväluoma, Jari
Niemi, Vesa
Thapaliya, Mahesh
Turtola, Eila
Järnstedt, Jorma
Timonen, Jussi
description The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.
doi_str_mv 10.1007/s11242-017-0967-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344555876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344555876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxDr6AO5IXKMwDAyz1MZqk3pJqnFJKDA6zRQqMDH69NKMiSvdnLP5v3P5ADgl-JxgXF9EQsqqRJjUCDc8lz0wIaymiHBa7YMJJrxBtCH0EBzFuMY4U6KagPuFSqnTFl75Pn1tlHNw2W2GXqXOO-hbOOv9B5o7M2hr4Ivqe7h8syrAZQo2Rtg5-OiDHyK8s6ZTx-CgVX20Jz-9AM-z66fpLVo83MynlwukKK9TPqTEVGAhiDINpYwYxZoaW8qpNZqtqhU3QlPDcatKrXibX9SZ0XZlFW84LcDZOHcb_PtgY5JrPwSXV8qSVhVjTNT_p_L7TUlFNlIAMqZ08DEG28pt6DYqfEqC5U6uHOXKLFfu5EqcmXJkYs66Vxt-J_8NfQNrZ3px</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344555876</pqid></control><display><type>article</type><title>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</title><source>SpringerNature Journals</source><creator>Hyväluoma, Jari ; Niemi, Vesa ; Thapaliya, Mahesh ; Turtola, Eila ; Järnstedt, Jorma ; Timonen, Jussi</creator><creatorcontrib>Hyväluoma, Jari ; Niemi, Vesa ; Thapaliya, Mahesh ; Turtola, Eila ; Järnstedt, Jorma ; Timonen, Jussi</creatorcontrib><description>The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0967-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Flow simulation ; Geometry ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Image reconstruction ; Industrial Chemistry/Chemical Engineering ; Porous media ; Shear flow ; Shear stress ; Simulation ; Tomography ; Wall shear stresses ; X ray imagery</subject><ispartof>Transport in porous media, 2018, Vol.121 (2), p.353-368</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</citedby><cites>FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</cites><orcidid>0000-0003-1113-439X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0967-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0967-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Niemi, Vesa</creatorcontrib><creatorcontrib>Thapaliya, Mahesh</creatorcontrib><creatorcontrib>Turtola, Eila</creatorcontrib><creatorcontrib>Järnstedt, Jorma</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><title>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flow simulation</subject><subject>Geometry</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Image reconstruction</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Porous media</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Tomography</subject><subject>Wall shear stresses</subject><subject>X ray imagery</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOAyEUhonRxDr6AO5IXKMwDAyz1MZqk3pJqnFJKDA6zRQqMDH69NKMiSvdnLP5v3P5ADgl-JxgXF9EQsqqRJjUCDc8lz0wIaymiHBa7YMJJrxBtCH0EBzFuMY4U6KagPuFSqnTFl75Pn1tlHNw2W2GXqXOO-hbOOv9B5o7M2hr4Ivqe7h8syrAZQo2Rtg5-OiDHyK8s6ZTx-CgVX20Jz-9AM-z66fpLVo83MynlwukKK9TPqTEVGAhiDINpYwYxZoaW8qpNZqtqhU3QlPDcatKrXibX9SZ0XZlFW84LcDZOHcb_PtgY5JrPwSXV8qSVhVjTNT_p_L7TUlFNlIAMqZ08DEG28pt6DYqfEqC5U6uHOXKLFfu5EqcmXJkYs66Vxt-J_8NfQNrZ3px</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Hyväluoma, Jari</creator><creator>Niemi, Vesa</creator><creator>Thapaliya, Mahesh</creator><creator>Turtola, Eila</creator><creator>Järnstedt, Jorma</creator><creator>Timonen, Jussi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1113-439X</orcidid></search><sort><creationdate>2018</creationdate><title>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</title><author>Hyväluoma, Jari ; Niemi, Vesa ; Thapaliya, Mahesh ; Turtola, Eila ; Järnstedt, Jorma ; Timonen, Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-3920380881ad93351da5970e363edc5b4b6d8c3d60fa2ca6f007c920cebea6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flow simulation</topic><topic>Geometry</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Image reconstruction</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Porous media</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Tomography</topic><topic>Wall shear stresses</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Niemi, Vesa</creatorcontrib><creatorcontrib>Thapaliya, Mahesh</creatorcontrib><creatorcontrib>Turtola, Eila</creatorcontrib><creatorcontrib>Järnstedt, Jorma</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyväluoma, Jari</au><au>Niemi, Vesa</au><au>Thapaliya, Mahesh</au><au>Turtola, Eila</au><au>Järnstedt, Jorma</au><au>Timonen, Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2018</date><risdate>2018</risdate><volume>121</volume><issue>2</issue><spage>353</spage><epage>368</epage><pages>353-368</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The lattice Boltzmann method is increasingly utilized in the simulation of flow-induced wall shear stress needed in various applications. In image-based flow simulations, the simulation geometry is usually based on a three-dimensional reconstruction of the true structure of the pore space obtained, for example, by X-ray tomography. The geometry is then given in a voxel-based representation, which complicates an accurate determination of the surface-normal vectors that are necessary in the computation of the wall shear stress. To avoid this problem, we introduce here a method for the determination of surface-normal vectors directly from a greyscale image instead of its segmented binary image version. The proposed method is fast and automatic, and it can be used for an arbitrary pore space geometry provided in a greyscale form by any imaging modality. We show that this method can produce accurate surface-normal vectors even for binary images and that their accuracy is further increased when the original greyscale images are used instead. We compute wall shear stresses for generated benchmark geometries and then demonstrate the utility of the method for soil samples with ‘random’ pores imaged by X-ray tomography.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0967-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1113-439X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2018, Vol.121 (2), p.353-368
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2344555876
source SpringerNature Journals
subjects Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computer simulation
Earth and Environmental Science
Earth Sciences
Flow simulation
Geometry
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Image reconstruction
Industrial Chemistry/Chemical Engineering
Porous media
Shear flow
Shear stress
Simulation
Tomography
Wall shear stresses
X ray imagery
title Lattice Boltzmann Simulation of Flow-Induced Wall Shear Stress in Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20Simulation%20of%20Flow-Induced%20Wall%20Shear%20Stress%20in%20Porous%20Media&rft.jtitle=Transport%20in%20porous%20media&rft.au=Hyv%C3%A4luoma,%20Jari&rft.date=2018&rft.volume=121&rft.issue=2&rft.spage=353&rft.epage=368&rft.pages=353-368&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0967-0&rft_dat=%3Cproquest_cross%3E2344555876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344555876&rft_id=info:pmid/&rfr_iscdi=true