Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data

Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2018-10, Vol.125 (1), p.5-22
Hauptverfasser: Li, Hechao, Chen, Pei-En, Jiao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 5
container_title Transport in porous media
container_volume 125
creator Li, Hechao
Chen, Pei-En
Jiao, Yang
description Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.
doi_str_mv 10.1007/s11242-017-0889-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344555279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344555279</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxPrxA7yReF6dWdhl91irVZM2Gj_OhLKgmLZUYI3-e2nWxJOeOMzzPsO8hJwgnCGAOI-IJS8LQFFA07TF5w4ZYSVYgTXju2QEWLcFa5Htk4MY3wByquEj4sZa90ElQx-M9uuYQq-T82vqLb33wfeRzvM0OLWM9MMp-pi8flUxOU2nffwhZ27lkunohVv5Ti3p3OngB1eWL-mlSuqI7NksMcc_7yF5nl49TW6K2d317WQ8KxSrRcp_rAQvF8JaZYzgiEZobhdoNUCnalGXNdNYwQJabZltLe8Eg8qoTjMwDbJDcjp4N8G_9yYm-eb7sM4rZck4r6qqFO2_FAK2DTQtzxQO1PacGIyVm-BWKnxJBLntXQ69y9y73PYuP3OmHDIxs-sXE37Nf4e-AcVRhsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344555279</pqid></control><display><type>article</type><title>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Hechao ; Chen, Pei-En ; Jiao, Yang</creator><creatorcontrib>Li, Hechao ; Chen, Pei-En ; Jiao, Yang</creatorcontrib><description>Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0889-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Clustering ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Image reconstruction ; Industrial Chemistry/Chemical Engineering ; Microstructure ; Petroleum engineering ; Photomicrographs ; Physical properties ; Porous materials ; Radiographs ; Sandstone ; Simulated annealing ; Two dimensional models</subject><ispartof>Transport in porous media, 2018-10, Vol.125 (1), p.5-22</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</citedby><cites>FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0889-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0889-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Hechao</creatorcontrib><creatorcontrib>Chen, Pei-En</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><title>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Image reconstruction</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microstructure</subject><subject>Petroleum engineering</subject><subject>Photomicrographs</subject><subject>Physical properties</subject><subject>Porous materials</subject><subject>Radiographs</subject><subject>Sandstone</subject><subject>Simulated annealing</subject><subject>Two dimensional models</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1PAyEQhonRxPrxA7yReF6dWdhl91irVZM2Gj_OhLKgmLZUYI3-e2nWxJOeOMzzPsO8hJwgnCGAOI-IJS8LQFFA07TF5w4ZYSVYgTXju2QEWLcFa5Htk4MY3wByquEj4sZa90ElQx-M9uuYQq-T82vqLb33wfeRzvM0OLWM9MMp-pi8flUxOU2nffwhZ27lkunohVv5Ti3p3OngB1eWL-mlSuqI7NksMcc_7yF5nl49TW6K2d317WQ8KxSrRcp_rAQvF8JaZYzgiEZobhdoNUCnalGXNdNYwQJabZltLe8Eg8qoTjMwDbJDcjp4N8G_9yYm-eb7sM4rZck4r6qqFO2_FAK2DTQtzxQO1PacGIyVm-BWKnxJBLntXQ69y9y73PYuP3OmHDIxs-sXE37Nf4e-AcVRhsI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Li, Hechao</creator><creator>Chen, Pei-En</creator><creator>Jiao, Yang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181001</creationdate><title>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</title><author>Li, Hechao ; Chen, Pei-En ; Jiao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Image reconstruction</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microstructure</topic><topic>Petroleum engineering</topic><topic>Photomicrographs</topic><topic>Physical properties</topic><topic>Porous materials</topic><topic>Radiographs</topic><topic>Sandstone</topic><topic>Simulated annealing</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hechao</creatorcontrib><creatorcontrib>Chen, Pei-En</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hechao</au><au>Chen, Pei-En</au><au>Jiao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>125</volume><issue>1</issue><spage>5</spage><epage>22</epage><pages>5-22</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0889-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2018-10, Vol.125 (1), p.5-22
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2344555279
source SpringerLink Journals - AutoHoldings
subjects Civil Engineering
Classical and Continuum Physics
Clustering
Computer simulation
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Image reconstruction
Industrial Chemistry/Chemical Engineering
Microstructure
Petroleum engineering
Photomicrographs
Physical properties
Porous materials
Radiographs
Sandstone
Simulated annealing
Two dimensional models
title Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Reconstruction%20of%20Porous%20Materials%20via%20Stochastic%20Fusion%20of%20Limited%20Bimodal%20Microstructural%20Data&rft.jtitle=Transport%20in%20porous%20media&rft.au=Li,%20Hechao&rft.date=2018-10-01&rft.volume=125&rft.issue=1&rft.spage=5&rft.epage=22&rft.pages=5-22&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0889-x&rft_dat=%3Cproquest_cross%3E2344555279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344555279&rft_id=info:pmid/&rfr_iscdi=true