Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data
Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reco...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2018-10, Vol.125 (1), p.5-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Transport in porous media |
container_volume | 125 |
creator | Li, Hechao Chen, Pei-En Jiao, Yang |
description | Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics. |
doi_str_mv | 10.1007/s11242-017-0889-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344555279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344555279</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxPrxA7yReF6dWdhl91irVZM2Gj_OhLKgmLZUYI3-e2nWxJOeOMzzPsO8hJwgnCGAOI-IJS8LQFFA07TF5w4ZYSVYgTXju2QEWLcFa5Htk4MY3wByquEj4sZa90ElQx-M9uuYQq-T82vqLb33wfeRzvM0OLWM9MMp-pi8flUxOU2nffwhZ27lkunohVv5Ti3p3OngB1eWL-mlSuqI7NksMcc_7yF5nl49TW6K2d317WQ8KxSrRcp_rAQvF8JaZYzgiEZobhdoNUCnalGXNdNYwQJabZltLe8Eg8qoTjMwDbJDcjp4N8G_9yYm-eb7sM4rZck4r6qqFO2_FAK2DTQtzxQO1PacGIyVm-BWKnxJBLntXQ69y9y73PYuP3OmHDIxs-sXE37Nf4e-AcVRhsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344555279</pqid></control><display><type>article</type><title>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Hechao ; Chen, Pei-En ; Jiao, Yang</creator><creatorcontrib>Li, Hechao ; Chen, Pei-En ; Jiao, Yang</creatorcontrib><description>Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0889-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Clustering ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Image reconstruction ; Industrial Chemistry/Chemical Engineering ; Microstructure ; Petroleum engineering ; Photomicrographs ; Physical properties ; Porous materials ; Radiographs ; Sandstone ; Simulated annealing ; Two dimensional models</subject><ispartof>Transport in porous media, 2018-10, Vol.125 (1), p.5-22</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</citedby><cites>FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0889-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0889-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Hechao</creatorcontrib><creatorcontrib>Chen, Pei-En</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><title>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Image reconstruction</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microstructure</subject><subject>Petroleum engineering</subject><subject>Photomicrographs</subject><subject>Physical properties</subject><subject>Porous materials</subject><subject>Radiographs</subject><subject>Sandstone</subject><subject>Simulated annealing</subject><subject>Two dimensional models</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1PAyEQhonRxPrxA7yReF6dWdhl91irVZM2Gj_OhLKgmLZUYI3-e2nWxJOeOMzzPsO8hJwgnCGAOI-IJS8LQFFA07TF5w4ZYSVYgTXju2QEWLcFa5Htk4MY3wByquEj4sZa90ElQx-M9uuYQq-T82vqLb33wfeRzvM0OLWM9MMp-pi8flUxOU2nffwhZ27lkunohVv5Ti3p3OngB1eWL-mlSuqI7NksMcc_7yF5nl49TW6K2d317WQ8KxSrRcp_rAQvF8JaZYzgiEZobhdoNUCnalGXNdNYwQJabZltLe8Eg8qoTjMwDbJDcjp4N8G_9yYm-eb7sM4rZck4r6qqFO2_FAK2DTQtzxQO1PacGIyVm-BWKnxJBLntXQ69y9y73PYuP3OmHDIxs-sXE37Nf4e-AcVRhsI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Li, Hechao</creator><creator>Chen, Pei-En</creator><creator>Jiao, Yang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181001</creationdate><title>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</title><author>Li, Hechao ; Chen, Pei-En ; Jiao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-395742b7ffaee7411e7c4fb1fc00da676263c150b09cf3f9f4d7305eadc30e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Image reconstruction</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microstructure</topic><topic>Petroleum engineering</topic><topic>Photomicrographs</topic><topic>Physical properties</topic><topic>Porous materials</topic><topic>Radiographs</topic><topic>Sandstone</topic><topic>Simulated annealing</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hechao</creatorcontrib><creatorcontrib>Chen, Pei-En</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hechao</au><au>Chen, Pei-En</au><au>Jiao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>125</volume><issue>1</issue><spage>5</spage><epage>22</epage><pages>5-22</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0889-x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2018-10, Vol.125 (1), p.5-22 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2344555279 |
source | SpringerLink Journals - AutoHoldings |
subjects | Civil Engineering Classical and Continuum Physics Clustering Computer simulation Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Image reconstruction Industrial Chemistry/Chemical Engineering Microstructure Petroleum engineering Photomicrographs Physical properties Porous materials Radiographs Sandstone Simulated annealing Two dimensional models |
title | Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Reconstruction%20of%20Porous%20Materials%20via%20Stochastic%20Fusion%20of%20Limited%20Bimodal%20Microstructural%20Data&rft.jtitle=Transport%20in%20porous%20media&rft.au=Li,%20Hechao&rft.date=2018-10-01&rft.volume=125&rft.issue=1&rft.spage=5&rft.epage=22&rft.pages=5-22&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0889-x&rft_dat=%3Cproquest_cross%3E2344555279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344555279&rft_id=info:pmid/&rfr_iscdi=true |