Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry

The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2017-05, Vol.118 (1), p.99-117
Hauptverfasser: Liu, Zhishang, Herring, Anna, Arns, Christoph, Berg, Steffen, Armstrong, Ryan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 99
container_title Transport in porous media
container_volume 118
creator Liu, Zhishang
Herring, Anna
Arns, Christoph
Berg, Steffen
Armstrong, Ryan T.
description The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.
doi_str_mv 10.1007/s11242-017-0849-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344541454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898473531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4G7AdTQvySQzSyltLRQs2K5DJpO0U9pJTaaU-vWmjAs3unjczTn3wUXoEcgzECJfIgDlFBOQmBS8xPkVGkAuGQbB-DUaEBAlZiWwW3QX45aQZBV8gMYLHyz-MHpns9FGB206G5ov3TW-zbzLliePFxsdbTbZ-VO2ik27zmZtZ9dB77Kp9XvbhfM9unF6F-3DTw7RajJejt7w_H06G73OseaMdZiBoZIZbZzIBTeGupzUQlDHieFQFzSFLmVtK1Y5KUVpWFW5QlhiCK05ZUP01Pcegv882tiprT-GNr1UlHGec0j3HwVFWXDJcgaJgp4ywccYrFOH0Ox1OCsg6rKp6jdVaVN12VTlyaG9ExPbrm341fyn9A3gW3ep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344541454</pqid></control><display><type>article</type><title>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</title><source>SpringerNature Journals</source><creator>Liu, Zhishang ; Herring, Anna ; Arns, Christoph ; Berg, Steffen ; Armstrong, Ryan T.</creator><creatorcontrib>Liu, Zhishang ; Herring, Anna ; Arns, Christoph ; Berg, Steffen ; Armstrong, Ryan T.</creatorcontrib><description>The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0849-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Correlation analysis ; Earth and Environmental Science ; Earth Sciences ; Flooding ; Functionals ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Mathematical morphology ; Multiphase flow ; Permeability ; Phase transitions ; Topology ; Two phase flow ; Wetting</subject><ispartof>Transport in porous media, 2017-05, Vol.118 (1), p.99-117</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</citedby><cites>FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</cites><orcidid>0000-0001-6431-7902 ; 0000-0003-2441-7719 ; 0000-0002-9403-9779 ; 0000-0003-4319-5306 ; 0000-0003-1721-3996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0849-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0849-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Zhishang</creatorcontrib><creatorcontrib>Herring, Anna</creatorcontrib><creatorcontrib>Arns, Christoph</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><title>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Correlation analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flooding</subject><subject>Functionals</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical morphology</subject><subject>Multiphase flow</subject><subject>Permeability</subject><subject>Phase transitions</subject><subject>Topology</subject><subject>Two phase flow</subject><subject>Wetting</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEURYMoWKsf4G7AdTQvySQzSyltLRQs2K5DJpO0U9pJTaaU-vWmjAs3unjczTn3wUXoEcgzECJfIgDlFBOQmBS8xPkVGkAuGQbB-DUaEBAlZiWwW3QX45aQZBV8gMYLHyz-MHpns9FGB206G5ov3TW-zbzLliePFxsdbTbZ-VO2ik27zmZtZ9dB77Kp9XvbhfM9unF6F-3DTw7RajJejt7w_H06G73OseaMdZiBoZIZbZzIBTeGupzUQlDHieFQFzSFLmVtK1Y5KUVpWFW5QlhiCK05ZUP01Pcegv882tiprT-GNr1UlHGec0j3HwVFWXDJcgaJgp4ywccYrFOH0Ox1OCsg6rKp6jdVaVN12VTlyaG9ExPbrm341fyn9A3gW3ep</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Liu, Zhishang</creator><creator>Herring, Anna</creator><creator>Arns, Christoph</creator><creator>Berg, Steffen</creator><creator>Armstrong, Ryan T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6431-7902</orcidid><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000-0002-9403-9779</orcidid><orcidid>https://orcid.org/0000-0003-4319-5306</orcidid><orcidid>https://orcid.org/0000-0003-1721-3996</orcidid></search><sort><creationdate>20170501</creationdate><title>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</title><author>Liu, Zhishang ; Herring, Anna ; Arns, Christoph ; Berg, Steffen ; Armstrong, Ryan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Correlation analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flooding</topic><topic>Functionals</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical morphology</topic><topic>Multiphase flow</topic><topic>Permeability</topic><topic>Phase transitions</topic><topic>Topology</topic><topic>Two phase flow</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhishang</creatorcontrib><creatorcontrib>Herring, Anna</creatorcontrib><creatorcontrib>Arns, Christoph</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhishang</au><au>Herring, Anna</au><au>Arns, Christoph</au><au>Berg, Steffen</au><au>Armstrong, Ryan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>118</volume><issue>1</issue><spage>99</spage><epage>117</epage><pages>99-117</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0849-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6431-7902</orcidid><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000-0002-9403-9779</orcidid><orcidid>https://orcid.org/0000-0003-4319-5306</orcidid><orcidid>https://orcid.org/0000-0003-1721-3996</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2017-05, Vol.118 (1), p.99-117
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2344541454
source SpringerNature Journals
subjects Civil Engineering
Classical and Continuum Physics
Correlation analysis
Earth and Environmental Science
Earth Sciences
Flooding
Functionals
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Mathematical morphology
Multiphase flow
Permeability
Phase transitions
Topology
Two phase flow
Wetting
title Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore-Scale%20Characterization%20of%20Two-Phase%20Flow%20Using%20Integral%20Geometry&rft.jtitle=Transport%20in%20porous%20media&rft.au=Liu,%20Zhishang&rft.date=2017-05-01&rft.volume=118&rft.issue=1&rft.spage=99&rft.epage=117&rft.pages=99-117&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0849-5&rft_dat=%3Cproquest_cross%3E1898473531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344541454&rft_id=info:pmid/&rfr_iscdi=true