Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry
The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Fun...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2017-05, Vol.118 (1), p.99-117 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | Transport in porous media |
container_volume | 118 |
creator | Liu, Zhishang Herring, Anna Arns, Christoph Berg, Steffen Armstrong, Ryan T. |
description | The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow. |
doi_str_mv | 10.1007/s11242-017-0849-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344541454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898473531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4G7AdTQvySQzSyltLRQs2K5DJpO0U9pJTaaU-vWmjAs3unjczTn3wUXoEcgzECJfIgDlFBOQmBS8xPkVGkAuGQbB-DUaEBAlZiWwW3QX45aQZBV8gMYLHyz-MHpns9FGB206G5ov3TW-zbzLliePFxsdbTbZ-VO2ik27zmZtZ9dB77Kp9XvbhfM9unF6F-3DTw7RajJejt7w_H06G73OseaMdZiBoZIZbZzIBTeGupzUQlDHieFQFzSFLmVtK1Y5KUVpWFW5QlhiCK05ZUP01Pcegv882tiprT-GNr1UlHGec0j3HwVFWXDJcgaJgp4ywccYrFOH0Ox1OCsg6rKp6jdVaVN12VTlyaG9ExPbrm341fyn9A3gW3ep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344541454</pqid></control><display><type>article</type><title>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</title><source>SpringerNature Journals</source><creator>Liu, Zhishang ; Herring, Anna ; Arns, Christoph ; Berg, Steffen ; Armstrong, Ryan T.</creator><creatorcontrib>Liu, Zhishang ; Herring, Anna ; Arns, Christoph ; Berg, Steffen ; Armstrong, Ryan T.</creatorcontrib><description>The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0849-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Correlation analysis ; Earth and Environmental Science ; Earth Sciences ; Flooding ; Functionals ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Mathematical morphology ; Multiphase flow ; Permeability ; Phase transitions ; Topology ; Two phase flow ; Wetting</subject><ispartof>Transport in porous media, 2017-05, Vol.118 (1), p.99-117</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</citedby><cites>FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</cites><orcidid>0000-0001-6431-7902 ; 0000-0003-2441-7719 ; 0000-0002-9403-9779 ; 0000-0003-4319-5306 ; 0000-0003-1721-3996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0849-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0849-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Zhishang</creatorcontrib><creatorcontrib>Herring, Anna</creatorcontrib><creatorcontrib>Arns, Christoph</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><title>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Correlation analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flooding</subject><subject>Functionals</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical morphology</subject><subject>Multiphase flow</subject><subject>Permeability</subject><subject>Phase transitions</subject><subject>Topology</subject><subject>Two phase flow</subject><subject>Wetting</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEURYMoWKsf4G7AdTQvySQzSyltLRQs2K5DJpO0U9pJTaaU-vWmjAs3unjczTn3wUXoEcgzECJfIgDlFBOQmBS8xPkVGkAuGQbB-DUaEBAlZiWwW3QX45aQZBV8gMYLHyz-MHpns9FGB206G5ov3TW-zbzLliePFxsdbTbZ-VO2ik27zmZtZ9dB77Kp9XvbhfM9unF6F-3DTw7RajJejt7w_H06G73OseaMdZiBoZIZbZzIBTeGupzUQlDHieFQFzSFLmVtK1Y5KUVpWFW5QlhiCK05ZUP01Pcegv882tiprT-GNr1UlHGec0j3HwVFWXDJcgaJgp4ywccYrFOH0Ox1OCsg6rKp6jdVaVN12VTlyaG9ExPbrm341fyn9A3gW3ep</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Liu, Zhishang</creator><creator>Herring, Anna</creator><creator>Arns, Christoph</creator><creator>Berg, Steffen</creator><creator>Armstrong, Ryan T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6431-7902</orcidid><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000-0002-9403-9779</orcidid><orcidid>https://orcid.org/0000-0003-4319-5306</orcidid><orcidid>https://orcid.org/0000-0003-1721-3996</orcidid></search><sort><creationdate>20170501</creationdate><title>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</title><author>Liu, Zhishang ; Herring, Anna ; Arns, Christoph ; Berg, Steffen ; Armstrong, Ryan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-31c273cacf6564cc2f50d662f40c41d820c4a97deb3bf7769c3bbf86e0c02d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Correlation analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flooding</topic><topic>Functionals</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical morphology</topic><topic>Multiphase flow</topic><topic>Permeability</topic><topic>Phase transitions</topic><topic>Topology</topic><topic>Two phase flow</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhishang</creatorcontrib><creatorcontrib>Herring, Anna</creatorcontrib><creatorcontrib>Arns, Christoph</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhishang</au><au>Herring, Anna</au><au>Arns, Christoph</au><au>Berg, Steffen</au><au>Armstrong, Ryan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>118</volume><issue>1</issue><spage>99</spage><epage>117</epage><pages>99-117</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The pore-scale morphological description of two-phase flow is fundamental to the understanding of relative permeability. In this effort, we visualize multiphase flow during core flooding experiments using X-ray microcomputed tomography. Resulting phase morphologies are quantified using Minkowski Functionals and relative permeability is measured using an image-based method where lattice Boltzmann simulations are conducted on connected phases from pore-scale images. A capillary drainage transform is also employed on the imaged rock structure, which provides reasonable results for image-based relative permeability measurements even though it provides pore-scale morphologies for the wetting phase that are not comparable to the experimental data. For the experimental data, there is a strong correlation between non-wetting phase Euler characteristic and relative permeability, whereas there is a weak correlation for the wetting phase topology. The relative permeability of some rock types is found to be more sensitive to topological changes than others, demonstrating the influence that phase connectivity has on two-phase flow. We demonstrate the influence that phase morphology has on relative permeability and provide insight into phase topological changes that occur during multiphase flow.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0849-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6431-7902</orcidid><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000-0002-9403-9779</orcidid><orcidid>https://orcid.org/0000-0003-4319-5306</orcidid><orcidid>https://orcid.org/0000-0003-1721-3996</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2017-05, Vol.118 (1), p.99-117 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2344541454 |
source | SpringerNature Journals |
subjects | Civil Engineering Classical and Continuum Physics Correlation analysis Earth and Environmental Science Earth Sciences Flooding Functionals Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Mathematical morphology Multiphase flow Permeability Phase transitions Topology Two phase flow Wetting |
title | Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore-Scale%20Characterization%20of%20Two-Phase%20Flow%20Using%20Integral%20Geometry&rft.jtitle=Transport%20in%20porous%20media&rft.au=Liu,%20Zhishang&rft.date=2017-05-01&rft.volume=118&rft.issue=1&rft.spage=99&rft.epage=117&rft.pages=99-117&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0849-5&rft_dat=%3Cproquest_cross%3E1898473531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344541454&rft_id=info:pmid/&rfr_iscdi=true |