Self-Consistent Channel Approach for Upscaling Chloride Diffusivity in Cement Pastes
Chloride ingress into concrete is a major cause for material degradation, such as cracking due to corrosion-induced steel reinforcement expansion. Corresponding transport processes encompass diffusion, convection, and migration, and their mathematical quantification as a function of the concrete com...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2017-07, Vol.118 (3), p.495-518 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 518 |
---|---|
container_issue | 3 |
container_start_page | 495 |
container_title | Transport in porous media |
container_volume | 118 |
creator | Damrongwiriyanupap, Nattapong Scheiner, Stefan Pichler, Bernhard Hellmich, Christian |
description | Chloride ingress into concrete is a major cause for material degradation, such as cracking due to corrosion-induced steel reinforcement expansion. Corresponding transport processes encompass diffusion, convection, and migration, and their mathematical quantification as a function of the concrete composition remains an unrevealed enigma. Approaching the problem step by step, we here concentrate on the diffusivity of cement paste, and how it follows from the microstructural features of the material and from the chloride diffusivity in the capillary pore spaces. For this purpose, we employ advanced self-consistent homogenization theory as recently used for permeability upscaling, based on the resolution of the pore space as pore channels being oriented in all space directions, resulting in a quite compact analytical relation between porosity, pore diffusivity, and the overall diffusivity of the cement paste. This relation is supported by experiments and reconfirms the pivotal role that layered water most probably plays for the reduction of the pore diffusivity, with respect to the diffusivity found under the chemical condition of a bulk solution. |
doi_str_mv | 10.1007/s11242-017-0867-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344539020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910504153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-3229e6879135bdb49a0fd77bd9753a7dcc5eb9a6316e074af58a207d70ea4bc03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisTaMX3GyrMJTQgKJdm05id26Sp1gp0j9exyVBRtYzWLuuTM6CF0TuCUA8i4SQjnFQCSGIpeYnaAZEZJhkjN-imZA8hKzkrBzdBHjFiBRBZ-h5YfpLK56H10cjR-zaqO9N122GIbQ62aT2T5kqyE2unN-ndZdH1xrsntn7T66LzceMuezyuwm-l2nlniJzqzuorn6mXO0enxYVs_49e3ppVq84oYVcsSM0tLkhUxfibqteanBtlLWbSkF07JtGmHqUueM5AYk11YUmoJsJRjN6wbYHN0ce9Orn3sTR7Xt98Gnk4oyzgUrgf6bIiUBAZwIllLkmGpCH2MwVg3B7XQ4KAJqUqyOilVSrCbFamLokYkp69cm_Gr-E_oGu8N9Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344539020</pqid></control><display><type>article</type><title>Self-Consistent Channel Approach for Upscaling Chloride Diffusivity in Cement Pastes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Damrongwiriyanupap, Nattapong ; Scheiner, Stefan ; Pichler, Bernhard ; Hellmich, Christian</creator><creatorcontrib>Damrongwiriyanupap, Nattapong ; Scheiner, Stefan ; Pichler, Bernhard ; Hellmich, Christian</creatorcontrib><description>Chloride ingress into concrete is a major cause for material degradation, such as cracking due to corrosion-induced steel reinforcement expansion. Corresponding transport processes encompass diffusion, convection, and migration, and their mathematical quantification as a function of the concrete composition remains an unrevealed enigma. Approaching the problem step by step, we here concentrate on the diffusivity of cement paste, and how it follows from the microstructural features of the material and from the chloride diffusivity in the capillary pore spaces. For this purpose, we employ advanced self-consistent homogenization theory as recently used for permeability upscaling, based on the resolution of the pore space as pore channels being oriented in all space directions, resulting in a quite compact analytical relation between porosity, pore diffusivity, and the overall diffusivity of the cement paste. This relation is supported by experiments and reconfirms the pivotal role that layered water most probably plays for the reduction of the pore diffusivity, with respect to the diffusivity found under the chemical condition of a bulk solution.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-017-0867-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Cement ; Cement paste ; Cements ; Channels ; Chlorides ; Civil Engineering ; Classical and Continuum Physics ; Concentration (composition) ; Concrete ; Convection ; Degradation ; Diffusivity ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Homogenization ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Mathematical analysis ; Microstructure ; Migration ; Organic chemistry ; Permeability ; Porosity ; Reinforcement ; Steels ; Stress corrosion cracking ; Transport processes</subject><ispartof>Transport in porous media, 2017-07, Vol.118 (3), p.495-518</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-3229e6879135bdb49a0fd77bd9753a7dcc5eb9a6316e074af58a207d70ea4bc03</citedby><cites>FETCH-LOGICAL-c387t-3229e6879135bdb49a0fd77bd9753a7dcc5eb9a6316e074af58a207d70ea4bc03</cites><orcidid>0000-0003-1078-7807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-017-0867-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-017-0867-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Damrongwiriyanupap, Nattapong</creatorcontrib><creatorcontrib>Scheiner, Stefan</creatorcontrib><creatorcontrib>Pichler, Bernhard</creatorcontrib><creatorcontrib>Hellmich, Christian</creatorcontrib><title>Self-Consistent Channel Approach for Upscaling Chloride Diffusivity in Cement Pastes</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Chloride ingress into concrete is a major cause for material degradation, such as cracking due to corrosion-induced steel reinforcement expansion. Corresponding transport processes encompass diffusion, convection, and migration, and their mathematical quantification as a function of the concrete composition remains an unrevealed enigma. Approaching the problem step by step, we here concentrate on the diffusivity of cement paste, and how it follows from the microstructural features of the material and from the chloride diffusivity in the capillary pore spaces. For this purpose, we employ advanced self-consistent homogenization theory as recently used for permeability upscaling, based on the resolution of the pore space as pore channels being oriented in all space directions, resulting in a quite compact analytical relation between porosity, pore diffusivity, and the overall diffusivity of the cement paste. This relation is supported by experiments and reconfirms the pivotal role that layered water most probably plays for the reduction of the pore diffusivity, with respect to the diffusivity found under the chemical condition of a bulk solution.</description><subject>Cement</subject><subject>Cement paste</subject><subject>Cements</subject><subject>Channels</subject><subject>Chlorides</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Concentration (composition)</subject><subject>Concrete</subject><subject>Convection</subject><subject>Degradation</subject><subject>Diffusivity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Homogenization</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical analysis</subject><subject>Microstructure</subject><subject>Migration</subject><subject>Organic chemistry</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Reinforcement</subject><subject>Steels</subject><subject>Stress corrosion cracking</subject><subject>Transport processes</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwAewisTaMX3GyrMJTQgKJdm05id26Sp1gp0j9exyVBRtYzWLuuTM6CF0TuCUA8i4SQjnFQCSGIpeYnaAZEZJhkjN-imZA8hKzkrBzdBHjFiBRBZ-h5YfpLK56H10cjR-zaqO9N122GIbQ62aT2T5kqyE2unN-ndZdH1xrsntn7T66LzceMuezyuwm-l2nlniJzqzuorn6mXO0enxYVs_49e3ppVq84oYVcsSM0tLkhUxfibqteanBtlLWbSkF07JtGmHqUueM5AYk11YUmoJsJRjN6wbYHN0ce9Orn3sTR7Xt98Gnk4oyzgUrgf6bIiUBAZwIllLkmGpCH2MwVg3B7XQ4KAJqUqyOilVSrCbFamLokYkp69cm_Gr-E_oGu8N9Wg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Damrongwiriyanupap, Nattapong</creator><creator>Scheiner, Stefan</creator><creator>Pichler, Bernhard</creator><creator>Hellmich, Christian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1078-7807</orcidid></search><sort><creationdate>20170701</creationdate><title>Self-Consistent Channel Approach for Upscaling Chloride Diffusivity in Cement Pastes</title><author>Damrongwiriyanupap, Nattapong ; Scheiner, Stefan ; Pichler, Bernhard ; Hellmich, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-3229e6879135bdb49a0fd77bd9753a7dcc5eb9a6316e074af58a207d70ea4bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cement</topic><topic>Cement paste</topic><topic>Cements</topic><topic>Channels</topic><topic>Chlorides</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Concentration (composition)</topic><topic>Concrete</topic><topic>Convection</topic><topic>Degradation</topic><topic>Diffusivity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Homogenization</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical analysis</topic><topic>Microstructure</topic><topic>Migration</topic><topic>Organic chemistry</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Reinforcement</topic><topic>Steels</topic><topic>Stress corrosion cracking</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damrongwiriyanupap, Nattapong</creatorcontrib><creatorcontrib>Scheiner, Stefan</creatorcontrib><creatorcontrib>Pichler, Bernhard</creatorcontrib><creatorcontrib>Hellmich, Christian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damrongwiriyanupap, Nattapong</au><au>Scheiner, Stefan</au><au>Pichler, Bernhard</au><au>Hellmich, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Consistent Channel Approach for Upscaling Chloride Diffusivity in Cement Pastes</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>118</volume><issue>3</issue><spage>495</spage><epage>518</epage><pages>495-518</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Chloride ingress into concrete is a major cause for material degradation, such as cracking due to corrosion-induced steel reinforcement expansion. Corresponding transport processes encompass diffusion, convection, and migration, and their mathematical quantification as a function of the concrete composition remains an unrevealed enigma. Approaching the problem step by step, we here concentrate on the diffusivity of cement paste, and how it follows from the microstructural features of the material and from the chloride diffusivity in the capillary pore spaces. For this purpose, we employ advanced self-consistent homogenization theory as recently used for permeability upscaling, based on the resolution of the pore space as pore channels being oriented in all space directions, resulting in a quite compact analytical relation between porosity, pore diffusivity, and the overall diffusivity of the cement paste. This relation is supported by experiments and reconfirms the pivotal role that layered water most probably plays for the reduction of the pore diffusivity, with respect to the diffusivity found under the chemical condition of a bulk solution.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-017-0867-3</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1078-7807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2017-07, Vol.118 (3), p.495-518 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2344539020 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cement Cement paste Cements Channels Chlorides Civil Engineering Classical and Continuum Physics Concentration (composition) Concrete Convection Degradation Diffusivity Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Homogenization Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Mathematical analysis Microstructure Migration Organic chemistry Permeability Porosity Reinforcement Steels Stress corrosion cracking Transport processes |
title | Self-Consistent Channel Approach for Upscaling Chloride Diffusivity in Cement Pastes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Consistent%20Channel%20Approach%20for%20Upscaling%20Chloride%20Diffusivity%20in%20Cement%20Pastes&rft.jtitle=Transport%20in%20porous%20media&rft.au=Damrongwiriyanupap,%20Nattapong&rft.date=2017-07-01&rft.volume=118&rft.issue=3&rft.spage=495&rft.epage=518&rft.pages=495-518&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-017-0867-3&rft_dat=%3Cproquest_cross%3E1910504153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344539020&rft_id=info:pmid/&rfr_iscdi=true |