Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids

This study analyzes the stability of an initially sharp interface between two miscible fluids in a porous medium. Linear stability equations are first derived using the similarity variable of the basic state, and then transformed into a system of ordinary differential equations using a spectral expa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2014-09, Vol.104 (2), p.407-433
Hauptverfasser: Kim, Min Chan, Yadav, Dhananjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 2
container_start_page 407
container_title Transport in porous media
container_volume 104
creator Kim, Min Chan
Yadav, Dhananjay
description This study analyzes the stability of an initially sharp interface between two miscible fluids in a porous medium. Linear stability equations are first derived using the similarity variable of the basic state, and then transformed into a system of ordinary differential equations using a spectral expansion with and without quasi-steady-state approximation (QSSA). These transformed equations are solved using the eigenanalysis and initial value problem approach. The initial growth rate analysis shows that initially the system is unconditionally stable. The stability characteristics obtained under the present QSSA are quantitatively same as those obtained without the QSSA. To support these theoretical results, numerical simulations are conducted using the Fourier-spectral method. The results of theoretical linear stability analyses and the numerical simulations validate to each other.
doi_str_mv 10.1007/s11242-014-0341-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344502528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344502528</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-6b6ef48ba7d2566de73c2d41f156282ab7005251bd51bea655692018000b0bc83</originalsourceid><addsrcrecordid>eNp1kM1u1TAQhSMEEpfCA7CzhFgaxr_JXZaKwpVuKRJ0bdmxA65Su3jiRR6A98ZXqeiqi9FoPOccjb-ue8vgAwPoPyJjXHIKTFIQklH5rNsx1QvKtJDPux0wvadiz8TL7hXiLUBzDXLX_T3GFGwhNnnyLad5m86TnVcMSPJElt-BXCcMy2n4VPNq07jSQ_J1DJ4cEi7WxTkuK4mpxZCb5HJNvu2-55IrkqvgY70jP-xSi13au1vJVcQxujmQy7lGj6-7F5OdMbx56GfdzeXnnxdf6fH6y-Hi_EitBL5Q7XSY5OBs77nS2odejNxLNjGl-cCt6wEUV8z5VsFqpfSeAxsAwIEbB3HWvdty70v-UwMu5jbX0j6LhgspFXDFTyq2qcaSEUuYzH2Jd7ashoE50TYbbdNomxNtI5vn_UOyxdHOU2mUIv438kHveyX6puObDtsq_Qrl8YKnw_8Bp0yPDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344502528</pqid></control><display><type>article</type><title>Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids</title><source>SpringerLink Journals</source><creator>Kim, Min Chan ; Yadav, Dhananjay</creator><creatorcontrib>Kim, Min Chan ; Yadav, Dhananjay</creatorcontrib><description>This study analyzes the stability of an initially sharp interface between two miscible fluids in a porous medium. Linear stability equations are first derived using the similarity variable of the basic state, and then transformed into a system of ordinary differential equations using a spectral expansion with and without quasi-steady-state approximation (QSSA). These transformed equations are solved using the eigenanalysis and initial value problem approach. The initial growth rate analysis shows that initially the system is unconditionally stable. The stability characteristics obtained under the present QSSA are quantitatively same as those obtained without the QSSA. To support these theoretical results, numerical simulations are conducted using the Fourier-spectral method. The results of theoretical linear stability analyses and the numerical simulations validate to each other.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-014-0341-4</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Boundary value problems ; Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer simulation ; Differential equations ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Interface stability ; Mathematical analysis ; Miscibility ; Nonlinear analysis ; Ordinary differential equations ; Pollution, environment geology ; Porous media ; Sedimentary rocks ; Spectral methods ; Stability analysis</subject><ispartof>Transport in porous media, 2014-09, Vol.104 (2), p.407-433</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-6b6ef48ba7d2566de73c2d41f156282ab7005251bd51bea655692018000b0bc83</citedby><cites>FETCH-LOGICAL-a402t-6b6ef48ba7d2566de73c2d41f156282ab7005251bd51bea655692018000b0bc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-014-0341-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-014-0341-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28697537$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Min Chan</creatorcontrib><creatorcontrib>Yadav, Dhananjay</creatorcontrib><title>Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>This study analyzes the stability of an initially sharp interface between two miscible fluids in a porous medium. Linear stability equations are first derived using the similarity variable of the basic state, and then transformed into a system of ordinary differential equations using a spectral expansion with and without quasi-steady-state approximation (QSSA). These transformed equations are solved using the eigenanalysis and initial value problem approach. The initial growth rate analysis shows that initially the system is unconditionally stable. The stability characteristics obtained under the present QSSA are quantitatively same as those obtained without the QSSA. To support these theoretical results, numerical simulations are conducted using the Fourier-spectral method. The results of theoretical linear stability analyses and the numerical simulations validate to each other.</description><subject>Boundary value problems</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Interface stability</subject><subject>Mathematical analysis</subject><subject>Miscibility</subject><subject>Nonlinear analysis</subject><subject>Ordinary differential equations</subject><subject>Pollution, environment geology</subject><subject>Porous media</subject><subject>Sedimentary rocks</subject><subject>Spectral methods</subject><subject>Stability analysis</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1u1TAQhSMEEpfCA7CzhFgaxr_JXZaKwpVuKRJ0bdmxA65Su3jiRR6A98ZXqeiqi9FoPOccjb-ue8vgAwPoPyJjXHIKTFIQklH5rNsx1QvKtJDPux0wvadiz8TL7hXiLUBzDXLX_T3GFGwhNnnyLad5m86TnVcMSPJElt-BXCcMy2n4VPNq07jSQ_J1DJ4cEi7WxTkuK4mpxZCb5HJNvu2-55IrkqvgY70jP-xSi13au1vJVcQxujmQy7lGj6-7F5OdMbx56GfdzeXnnxdf6fH6y-Hi_EitBL5Q7XSY5OBs77nS2odejNxLNjGl-cCt6wEUV8z5VsFqpfSeAxsAwIEbB3HWvdty70v-UwMu5jbX0j6LhgspFXDFTyq2qcaSEUuYzH2Jd7ashoE50TYbbdNomxNtI5vn_UOyxdHOU2mUIv438kHveyX6puObDtsq_Qrl8YKnw_8Bp0yPDg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kim, Min Chan</creator><creator>Yadav, Dhananjay</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140901</creationdate><title>Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids</title><author>Kim, Min Chan ; Yadav, Dhananjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-6b6ef48ba7d2566de73c2d41f156282ab7005251bd51bea655692018000b0bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary value problems</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Interface stability</topic><topic>Mathematical analysis</topic><topic>Miscibility</topic><topic>Nonlinear analysis</topic><topic>Ordinary differential equations</topic><topic>Pollution, environment geology</topic><topic>Porous media</topic><topic>Sedimentary rocks</topic><topic>Spectral methods</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min Chan</creatorcontrib><creatorcontrib>Yadav, Dhananjay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min Chan</au><au>Yadav, Dhananjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>104</volume><issue>2</issue><spage>407</spage><epage>433</epage><pages>407-433</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>This study analyzes the stability of an initially sharp interface between two miscible fluids in a porous medium. Linear stability equations are first derived using the similarity variable of the basic state, and then transformed into a system of ordinary differential equations using a spectral expansion with and without quasi-steady-state approximation (QSSA). These transformed equations are solved using the eigenanalysis and initial value problem approach. The initial growth rate analysis shows that initially the system is unconditionally stable. The stability characteristics obtained under the present QSSA are quantitatively same as those obtained without the QSSA. To support these theoretical results, numerical simulations are conducted using the Fourier-spectral method. The results of theoretical linear stability analyses and the numerical simulations validate to each other.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-014-0341-4</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2014-09, Vol.104 (2), p.407-433
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2344502528
source SpringerLink Journals
subjects Boundary value problems
Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computer simulation
Differential equations
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Geotechnical Engineering & Applied Earth Sciences
Hydrocarbons
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Interface stability
Mathematical analysis
Miscibility
Nonlinear analysis
Ordinary differential equations
Pollution, environment geology
Porous media
Sedimentary rocks
Spectral methods
Stability analysis
title Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20Nonlinear%20Analyses%20of%20the%20Onset%20of%20Buoyancy-Induced%20Instability%20in%20an%20Unbounded%20Porous%20Medium%20Saturated%20by%20Miscible%20Fluids&rft.jtitle=Transport%20in%20porous%20media&rft.au=Kim,%20Min%20Chan&rft.date=2014-09-01&rft.volume=104&rft.issue=2&rft.spage=407&rft.epage=433&rft.pages=407-433&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-014-0341-4&rft_dat=%3Cproquest_cross%3E2344502528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344502528&rft_id=info:pmid/&rfr_iscdi=true