Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition

We present a method for efficiently finding solutions of L\"uscher's quantisation condition, the equation which relates two-particle scattering amplitudes to the discrete spectrum of states in a periodic spatial volume of finite extent such as that present in lattice QCD. The approach prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
Hauptverfasser: Woss, Antoni J, Wilson, David J, Dudek, Jozef J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Woss, Antoni J
Wilson, David J
Dudek, Jozef J
description We present a method for efficiently finding solutions of L\"uscher's quantisation condition, the equation which relates two-particle scattering amplitudes to the discrete spectrum of states in a periodic spatial volume of finite extent such as that present in lattice QCD. The approach proposed is based on an eigenvalue decomposition in the space of coupled-channels and partial-waves, which proves to have several desirable and simplifying features that are of great benefit when considering problems beyond simple elastic scattering of spinless particles. We illustrate the method with a toy model of vector-vector scattering featuring a high density of solutions, and with an application to explicit lattice QCD energy level data describing \(J^P=1^-\) and \(1^+\) scattering in several coupled channels.
doi_str_mv 10.48550/arxiv.2001.08474
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2344453922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344453922</sourcerecordid><originalsourceid>FETCH-proquest_journals_23444539223</originalsourceid><addsrcrecordid>eNqNy71uwjAUhmELqVJRywV0s8Sc1Dm2IcyIqkPH7sgyJ7GR4wP-Qb24br2xRqgX0Okbvudl7KUTreq1Fq8mfflbC0J0rejVVi3YEqTsml4BPLJVzmchBGy2oLVcsvEwDN56jIVnCrV4ipwGXhzyqYbiG-tMjBj4x893tg4TP2HBNPlo5sRSPPl7U1yiOjqOfsR4M6HiDC1NF8p38MweBhMyrv72ia3fDp_79-aS6Foxl-OZaorzdQSplNJyByD_p34B-BVP2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344453922</pqid></control><display><type>article</type><title>Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition</title><source>Free E- Journals</source><creator>Woss, Antoni J ; Wilson, David J ; Dudek, Jozef J</creator><creatorcontrib>Woss, Antoni J ; Wilson, David J ; Dudek, Jozef J</creatorcontrib><description>We present a method for efficiently finding solutions of L\"uscher's quantisation condition, the equation which relates two-particle scattering amplitudes to the discrete spectrum of states in a periodic spatial volume of finite extent such as that present in lattice QCD. The approach proposed is based on an eigenvalue decomposition in the space of coupled-channels and partial-waves, which proves to have several desirable and simplifying features that are of great benefit when considering problems beyond simple elastic scattering of spinless particles. We illustrate the method with a toy model of vector-vector scattering featuring a high density of solutions, and with an application to explicit lattice QCD energy level data describing \(J^P=1^-\) and \(1^+\) scattering in several coupled channels.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.08474</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Channels ; Decomposition ; Eigenvalues ; Elastic scattering ; Energy levels ; Quantum chromodynamics</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27904</link.rule.ids></links><search><creatorcontrib>Woss, Antoni J</creatorcontrib><creatorcontrib>Wilson, David J</creatorcontrib><creatorcontrib>Dudek, Jozef J</creatorcontrib><title>Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition</title><title>arXiv.org</title><description>We present a method for efficiently finding solutions of L\"uscher's quantisation condition, the equation which relates two-particle scattering amplitudes to the discrete spectrum of states in a periodic spatial volume of finite extent such as that present in lattice QCD. The approach proposed is based on an eigenvalue decomposition in the space of coupled-channels and partial-waves, which proves to have several desirable and simplifying features that are of great benefit when considering problems beyond simple elastic scattering of spinless particles. We illustrate the method with a toy model of vector-vector scattering featuring a high density of solutions, and with an application to explicit lattice QCD energy level data describing \(J^P=1^-\) and \(1^+\) scattering in several coupled channels.</description><subject>Channels</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Elastic scattering</subject><subject>Energy levels</subject><subject>Quantum chromodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy71uwjAUhmELqVJRywV0s8Sc1Dm2IcyIqkPH7sgyJ7GR4wP-Qb24br2xRqgX0Okbvudl7KUTreq1Fq8mfflbC0J0rejVVi3YEqTsml4BPLJVzmchBGy2oLVcsvEwDN56jIVnCrV4ipwGXhzyqYbiG-tMjBj4x893tg4TP2HBNPlo5sRSPPl7U1yiOjqOfsR4M6HiDC1NF8p38MweBhMyrv72ia3fDp_79-aS6Foxl-OZaorzdQSplNJyByD_p34B-BVP2w</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Woss, Antoni J</creator><creator>Wilson, David J</creator><creator>Dudek, Jozef J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200123</creationdate><title>Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition</title><author>Woss, Antoni J ; Wilson, David J ; Dudek, Jozef J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23444539223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Channels</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Elastic scattering</topic><topic>Energy levels</topic><topic>Quantum chromodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Woss, Antoni J</creatorcontrib><creatorcontrib>Wilson, David J</creatorcontrib><creatorcontrib>Dudek, Jozef J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woss, Antoni J</au><au>Wilson, David J</au><au>Dudek, Jozef J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition</atitle><jtitle>arXiv.org</jtitle><date>2020-01-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present a method for efficiently finding solutions of L\"uscher's quantisation condition, the equation which relates two-particle scattering amplitudes to the discrete spectrum of states in a periodic spatial volume of finite extent such as that present in lattice QCD. The approach proposed is based on an eigenvalue decomposition in the space of coupled-channels and partial-waves, which proves to have several desirable and simplifying features that are of great benefit when considering problems beyond simple elastic scattering of spinless particles. We illustrate the method with a toy model of vector-vector scattering featuring a high density of solutions, and with an application to explicit lattice QCD energy level data describing \(J^P=1^-\) and \(1^+\) scattering in several coupled channels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.08474</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2344453922
source Free E- Journals
subjects Channels
Decomposition
Eigenvalues
Elastic scattering
Energy levels
Quantum chromodynamics
title Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20solution%20of%20the%20multi-channel%20L%C3%BCscher%20determinant%20condition%20through%20eigenvalue%20decomposition&rft.jtitle=arXiv.org&rft.au=Woss,%20Antoni%20J&rft.date=2020-01-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.08474&rft_dat=%3Cproquest%3E2344453922%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344453922&rft_id=info:pmid/&rfr_iscdi=true