Diophantine equations involving Euler function

In this paper, we show that the equation \(\varphi(|x^{m}-y^{m}|)=|x^{n}-y^{n}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m>0, n>0\) except for the solutions \((x,y,m,n)=((2^{t-1}\pm1),-(2^{t-1}\mp1),2,1), (-(2^{t-1}\pm1),(2^{t-1}\mp1),2,1),\) where \(t\) is a integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
1. Verfasser: Bai, Hairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bai, Hairong
description In this paper, we show that the equation \(\varphi(|x^{m}-y^{m}|)=|x^{n}-y^{n}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m>0, n>0\) except for the solutions \((x,y,m,n)=((2^{t-1}\pm1),-(2^{t-1}\mp1),2,1), (-(2^{t-1}\pm1),(2^{t-1}\mp1),2,1),\) where \(t\) is a integer with \(t\geq 2.\) The equation \(\varphi(|\frac{x^{m}-y^{m}}{x-y}|)=|\frac{x^{n}-y^{n}}{x-y}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m>0, n>0\) except for the solutions \((x,y,m,n)=(a\pm1, -a, 1, 2), (a\pm i, -a, 2, 1),\) where \(a\) is a integer with \(i=1,2.\)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2344450689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344450689</sourcerecordid><originalsourceid>FETCH-proquest_journals_23444506893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc8nML8hIzCvJzEtVSC0sTSzJzM8rVsjMK8vPKcvMS1dwLc1JLVJIK81LBsnwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbGJiYmpgZmFpTFxqgBK8zMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344450689</pqid></control><display><type>article</type><title>Diophantine equations involving Euler function</title><source>Free E- Journals</source><creator>Bai, Hairong</creator><creatorcontrib>Bai, Hairong</creatorcontrib><description>In this paper, we show that the equation \(\varphi(|x^{m}-y^{m}|)=|x^{n}-y^{n}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m&gt;0, n&gt;0\) except for the solutions \((x,y,m,n)=((2^{t-1}\pm1),-(2^{t-1}\mp1),2,1), (-(2^{t-1}\pm1),(2^{t-1}\mp1),2,1),\) where \(t\) is a integer with \(t\geq 2.\) The equation \(\varphi(|\frac{x^{m}-y^{m}}{x-y}|)=|\frac{x^{n}-y^{n}}{x-y}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m&gt;0, n&gt;0\) except for the solutions \((x,y,m,n)=(a\pm1, -a, 1, 2), (a\pm i, -a, 2, 1),\) where \(a\) is a integer with \(i=1,2.\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diophantine equation ; Integers</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bai, Hairong</creatorcontrib><title>Diophantine equations involving Euler function</title><title>arXiv.org</title><description>In this paper, we show that the equation \(\varphi(|x^{m}-y^{m}|)=|x^{n}-y^{n}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m&gt;0, n&gt;0\) except for the solutions \((x,y,m,n)=((2^{t-1}\pm1),-(2^{t-1}\mp1),2,1), (-(2^{t-1}\pm1),(2^{t-1}\mp1),2,1),\) where \(t\) is a integer with \(t\geq 2.\) The equation \(\varphi(|\frac{x^{m}-y^{m}}{x-y}|)=|\frac{x^{n}-y^{n}}{x-y}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m&gt;0, n&gt;0\) except for the solutions \((x,y,m,n)=(a\pm1, -a, 1, 2), (a\pm i, -a, 2, 1),\) where \(a\) is a integer with \(i=1,2.\)</description><subject>Diophantine equation</subject><subject>Integers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc8nML8hIzCvJzEtVSC0sTSzJzM8rVsjMK8vPKcvMS1dwLc1JLVJIK81LBsnwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbGJiYmpgZmFpTFxqgBK8zMY</recordid><startdate>20200122</startdate><enddate>20200122</enddate><creator>Bai, Hairong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200122</creationdate><title>Diophantine equations involving Euler function</title><author>Bai, Hairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23444506893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diophantine equation</topic><topic>Integers</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Hairong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Hairong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Diophantine equations involving Euler function</atitle><jtitle>arXiv.org</jtitle><date>2020-01-22</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we show that the equation \(\varphi(|x^{m}-y^{m}|)=|x^{n}-y^{n}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m&gt;0, n&gt;0\) except for the solutions \((x,y,m,n)=((2^{t-1}\pm1),-(2^{t-1}\mp1),2,1), (-(2^{t-1}\pm1),(2^{t-1}\mp1),2,1),\) where \(t\) is a integer with \(t\geq 2.\) The equation \(\varphi(|\frac{x^{m}-y^{m}}{x-y}|)=|\frac{x^{n}-y^{n}}{x-y}|\) has no nontrivial solutions in integers \(x,y,m,n\) with \(xy\neq0, m&gt;0, n&gt;0\) except for the solutions \((x,y,m,n)=(a\pm1, -a, 1, 2), (a\pm i, -a, 2, 1),\) where \(a\) is a integer with \(i=1,2.\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2344450689
source Free E- Journals
subjects Diophantine equation
Integers
title Diophantine equations involving Euler function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Diophantine%20equations%20involving%20Euler%20function&rft.jtitle=arXiv.org&rft.au=Bai,%20Hairong&rft.date=2020-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2344450689%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344450689&rft_id=info:pmid/&rfr_iscdi=true