Electrical transport properties of dip-coated nanocrystalline Cu2ZnSnS4 thin films

Direct deposition of thin films from pure solution has emerged as a promising route for low-cost chalcogenide absorber materials for solar PV. Electrical transport properties of Cu-based multicomponent material are under investigation and are expected to have a strong impact on final device performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020, Vol.31 (1), p.658-666
Hauptverfasser: Ghediya, Prashant R., Chaudhuri, Tapas K., Ray, Jaymin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 1
container_start_page 658
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Ghediya, Prashant R.
Chaudhuri, Tapas K.
Ray, Jaymin
description Direct deposition of thin films from pure solution has emerged as a promising route for low-cost chalcogenide absorber materials for solar PV. Electrical transport properties of Cu-based multicomponent material are under investigation and are expected to have a strong impact on final device performance. In this study, we report nanocrystalline Cu 2 ZnSnS 4 (CZTS) thin films dip-coated from methanolic ink. Temperature variation of electrical conductivity of these films was studied in dark and under light in the temperature range from 77 to 500 K to investigate the different mode of conduction. Analysis of data revealed that transport of holes in these films is dominated by either hopping in defect states or activated band conduction depending on the temperature range. The films were p-type and showed high carrier concentration (10 19  cm −3 ). Films were found to be pure kesterite CZTS as confirmed by X-ray diffraction and Raman spectroscopy.
doi_str_mv 10.1007/s10854-019-02572-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344353513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344353513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9f1752a807398ffe185c822fdd2b1f321b1f989ece8dd5e98a4a61ffd8a764d83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOpprkyyl1AsUBKsgbkLMRadMM2OSWfTtHR3BnZtzNv_3n8MHwDnBlwRjeVUIVoIjTDTCVEiK5AGYESEZ4oq-HIIZ1kIiLig9BielbDHGC87UDDyu2uBqbpxtYc02lb7LFfa560OuTSiwi9A3PXKdrcHDZFPn8r5U27ZNCnA50Ne0SRsO60eTYGzaXTkFR9G2JZz97jl4vlk9Le_Q-uH2fnm9Ro4RXZGORApqFZZMqxgDUcIpSqP39I1ERsk4tdLBBeW9CFpZbhckRq-sXHCv2BxcTL3jt59DKNVsuyGn8aShjHMmmCBsTNEp5XJXSg7R9LnZ2bw3BJtvd2ZyZ0Z35sedkSPEJqiM4fQe8l_1P9QXF8xyrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344353513</pqid></control><display><type>article</type><title>Electrical transport properties of dip-coated nanocrystalline Cu2ZnSnS4 thin films</title><source>SpringerLink Journals</source><creator>Ghediya, Prashant R. ; Chaudhuri, Tapas K. ; Ray, Jaymin</creator><creatorcontrib>Ghediya, Prashant R. ; Chaudhuri, Tapas K. ; Ray, Jaymin</creatorcontrib><description>Direct deposition of thin films from pure solution has emerged as a promising route for low-cost chalcogenide absorber materials for solar PV. Electrical transport properties of Cu-based multicomponent material are under investigation and are expected to have a strong impact on final device performance. In this study, we report nanocrystalline Cu 2 ZnSnS 4 (CZTS) thin films dip-coated from methanolic ink. Temperature variation of electrical conductivity of these films was studied in dark and under light in the temperature range from 77 to 500 K to investigate the different mode of conduction. Analysis of data revealed that transport of holes in these films is dominated by either hopping in defect states or activated band conduction depending on the temperature range. The films were p-type and showed high carrier concentration (10 19  cm −3 ). Films were found to be pure kesterite CZTS as confirmed by X-ray diffraction and Raman spectroscopy.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02572-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers (materials) ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conduction bands ; Electrical resistivity ; Immersion coating ; Materials Science ; Nanocrystals ; Optical and Electronic Materials ; Raman spectroscopy ; Thin films ; Transport properties</subject><ispartof>Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.658-666</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9f1752a807398ffe185c822fdd2b1f321b1f989ece8dd5e98a4a61ffd8a764d83</citedby><cites>FETCH-LOGICAL-c319t-9f1752a807398ffe185c822fdd2b1f321b1f989ece8dd5e98a4a61ffd8a764d83</cites><orcidid>0000-0001-9953-0471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-02572-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-02572-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ghediya, Prashant R.</creatorcontrib><creatorcontrib>Chaudhuri, Tapas K.</creatorcontrib><creatorcontrib>Ray, Jaymin</creatorcontrib><title>Electrical transport properties of dip-coated nanocrystalline Cu2ZnSnS4 thin films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Direct deposition of thin films from pure solution has emerged as a promising route for low-cost chalcogenide absorber materials for solar PV. Electrical transport properties of Cu-based multicomponent material are under investigation and are expected to have a strong impact on final device performance. In this study, we report nanocrystalline Cu 2 ZnSnS 4 (CZTS) thin films dip-coated from methanolic ink. Temperature variation of electrical conductivity of these films was studied in dark and under light in the temperature range from 77 to 500 K to investigate the different mode of conduction. Analysis of data revealed that transport of holes in these films is dominated by either hopping in defect states or activated band conduction depending on the temperature range. The films were p-type and showed high carrier concentration (10 19  cm −3 ). Films were found to be pure kesterite CZTS as confirmed by X-ray diffraction and Raman spectroscopy.</description><subject>Absorbers (materials)</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Electrical resistivity</subject><subject>Immersion coating</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Optical and Electronic Materials</subject><subject>Raman spectroscopy</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOpprkyyl1AsUBKsgbkLMRadMM2OSWfTtHR3BnZtzNv_3n8MHwDnBlwRjeVUIVoIjTDTCVEiK5AGYESEZ4oq-HIIZ1kIiLig9BielbDHGC87UDDyu2uBqbpxtYc02lb7LFfa560OuTSiwi9A3PXKdrcHDZFPn8r5U27ZNCnA50Ne0SRsO60eTYGzaXTkFR9G2JZz97jl4vlk9Le_Q-uH2fnm9Ro4RXZGORApqFZZMqxgDUcIpSqP39I1ERsk4tdLBBeW9CFpZbhckRq-sXHCv2BxcTL3jt59DKNVsuyGn8aShjHMmmCBsTNEp5XJXSg7R9LnZ2bw3BJtvd2ZyZ0Z35sedkSPEJqiM4fQe8l_1P9QXF8xyrA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ghediya, Prashant R.</creator><creator>Chaudhuri, Tapas K.</creator><creator>Ray, Jaymin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9953-0471</orcidid></search><sort><creationdate>2020</creationdate><title>Electrical transport properties of dip-coated nanocrystalline Cu2ZnSnS4 thin films</title><author>Ghediya, Prashant R. ; Chaudhuri, Tapas K. ; Ray, Jaymin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9f1752a807398ffe185c822fdd2b1f321b1f989ece8dd5e98a4a61ffd8a764d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers (materials)</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Electrical resistivity</topic><topic>Immersion coating</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Optical and Electronic Materials</topic><topic>Raman spectroscopy</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghediya, Prashant R.</creatorcontrib><creatorcontrib>Chaudhuri, Tapas K.</creatorcontrib><creatorcontrib>Ray, Jaymin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghediya, Prashant R.</au><au>Chaudhuri, Tapas K.</au><au>Ray, Jaymin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical transport properties of dip-coated nanocrystalline Cu2ZnSnS4 thin films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>658</spage><epage>666</epage><pages>658-666</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Direct deposition of thin films from pure solution has emerged as a promising route for low-cost chalcogenide absorber materials for solar PV. Electrical transport properties of Cu-based multicomponent material are under investigation and are expected to have a strong impact on final device performance. In this study, we report nanocrystalline Cu 2 ZnSnS 4 (CZTS) thin films dip-coated from methanolic ink. Temperature variation of electrical conductivity of these films was studied in dark and under light in the temperature range from 77 to 500 K to investigate the different mode of conduction. Analysis of data revealed that transport of holes in these films is dominated by either hopping in defect states or activated band conduction depending on the temperature range. The films were p-type and showed high carrier concentration (10 19  cm −3 ). Films were found to be pure kesterite CZTS as confirmed by X-ray diffraction and Raman spectroscopy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02572-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9953-0471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.658-666
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2344353513
source SpringerLink Journals
subjects Absorbers (materials)
Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conduction bands
Electrical resistivity
Immersion coating
Materials Science
Nanocrystals
Optical and Electronic Materials
Raman spectroscopy
Thin films
Transport properties
title Electrical transport properties of dip-coated nanocrystalline Cu2ZnSnS4 thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20transport%20properties%20of%20dip-coated%20nanocrystalline%20Cu2ZnSnS4%20thin%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ghediya,%20Prashant%20R.&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=658&rft.epage=666&rft.pages=658-666&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02572-7&rft_dat=%3Cproquest_cross%3E2344353513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344353513&rft_id=info:pmid/&rfr_iscdi=true