Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-01, Vol.54 (2), p.1033-1044
Hauptverfasser: Aranguren-Abadía, Libe, Lille-Langøy, Roger, Madsen, Alexander K, Karchner, Sibel I, Franks, Diana G, Yadetie, Fekadu, Hahn, Mark E, Goksøyr, Anders, Karlsen, Odd André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 2
container_start_page 1033
container_title Environmental science & technology
container_volume 54
creator Aranguren-Abadía, Libe
Lille-Langøy, Roger
Madsen, Alexander K
Karchner, Sibel I
Franks, Diana G
Yadetie, Fekadu
Hahn, Mark E
Goksøyr, Anders
Karlsen, Odd André
description The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo­[3,2-b]­carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.
doi_str_mv 10.1021/acs.est.9b05312
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2344260845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344260845</sourcerecordid><originalsourceid>FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</originalsourceid><addsrcrecordid>eNp1kV2LEzEUhoMobl299k4C3qzIdPMxJ53eLJTifsAuiih4F06TM3aW6aSbzAj992ZsLauwVwnkOU-S92XsrRRTKZQ8R5emlPrpfCVAS_WMTSQoUUAF8jmbCCF1Mdfmxwl7ldK9EEJpUb1kJ1pWoGQlJuzhLrTkhhYjx87zy6FzfRM6bPmXGLYU-4YSDzXv18QXfYtd3zi-DJ6fXaEfEt-EuB7wA1_EXcuvdz4Gh3EVOv6VHG37EBNfrKPEP_a8U_iavaixTfTmsJ6y75efvi2vi9vPVzfLxW2B5Vz0RQ0lqMop8FQbo-oZmJlXjsjU2pEXQEgleFmq2hvUqFTlCaSGUjoNK9Cn7GLv3Q6rDXlHXR-xtdvYbDDubMDG_nvSNWv7M_yyMyE06FFwdhDE8DDklO2mSY7aHAKFIVkFRoJWlZln9P1_6H0YYk4xU7oslRFVOQrP95SLIaVI9fExUtixTpvrtOP0oc488e7xH4783_4y8HEPjJPHO5_S_QbRBavR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344260845</pqid></control><display><type>article</type><title>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</title><source>MEDLINE</source><source>ACS Publications</source><creator>Aranguren-Abadía, Libe ; Lille-Langøy, Roger ; Madsen, Alexander K ; Karchner, Sibel I ; Franks, Diana G ; Yadetie, Fekadu ; Hahn, Mark E ; Goksøyr, Anders ; Karlsen, Odd André</creator><creatorcontrib>Aranguren-Abadía, Libe ; Lille-Langøy, Roger ; Madsen, Alexander K ; Karchner, Sibel I ; Franks, Diana G ; Yadetie, Fekadu ; Hahn, Mark E ; Goksøyr, Anders ; Karlsen, Odd André</creatorcontrib><description>The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo­[3,2-b]­carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05312</identifier><identifier>PMID: 31852180</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agonists ; Animals ; Aromatic compounds ; Aryl hydrocarbon receptors ; Binding ; Carbazole ; Carbazoles ; CYP1A protein ; Cytochrome P450 ; Dioxins ; ecotoxicology ; environmental science ; Gadus morhua ; Genomes ; Halogenated hydrocarbons ; Hydrocarbons ; liver ; Naphthoflavone ; Phylogeny ; Polychlorinated Dibenzodioxins ; Polycyclic Aromatic Hydrocarbons ; Proteins ; Receptor mechanisms ; Receptors ; Receptors, Aryl Hydrocarbon ; Reporter gene ; reporter genes ; Signal transduction ; TCDD ; technology ; tetrachlorodibenzo-p-dioxin ; Toxicity ; Toxicology ; Transcription activation ; transcriptional activation ; Vertebrates ; Xenobiotics</subject><ispartof>Environmental science &amp; technology, 2020-01, Vol.54 (2), p.1033-1044</ispartof><rights>Copyright American Chemical Society Jan 21, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</citedby><cites>FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</cites><orcidid>0000-0003-0075-6601 ; 0000-0003-4358-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05312$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05312$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31852180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aranguren-Abadía, Libe</creatorcontrib><creatorcontrib>Lille-Langøy, Roger</creatorcontrib><creatorcontrib>Madsen, Alexander K</creatorcontrib><creatorcontrib>Karchner, Sibel I</creatorcontrib><creatorcontrib>Franks, Diana G</creatorcontrib><creatorcontrib>Yadetie, Fekadu</creatorcontrib><creatorcontrib>Hahn, Mark E</creatorcontrib><creatorcontrib>Goksøyr, Anders</creatorcontrib><creatorcontrib>Karlsen, Odd André</creatorcontrib><title>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo­[3,2-b]­carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.</description><subject>Agonists</subject><subject>Animals</subject><subject>Aromatic compounds</subject><subject>Aryl hydrocarbon receptors</subject><subject>Binding</subject><subject>Carbazole</subject><subject>Carbazoles</subject><subject>CYP1A protein</subject><subject>Cytochrome P450</subject><subject>Dioxins</subject><subject>ecotoxicology</subject><subject>environmental science</subject><subject>Gadus morhua</subject><subject>Genomes</subject><subject>Halogenated hydrocarbons</subject><subject>Hydrocarbons</subject><subject>liver</subject><subject>Naphthoflavone</subject><subject>Phylogeny</subject><subject>Polychlorinated Dibenzodioxins</subject><subject>Polycyclic Aromatic Hydrocarbons</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, Aryl Hydrocarbon</subject><subject>Reporter gene</subject><subject>reporter genes</subject><subject>Signal transduction</subject><subject>TCDD</subject><subject>technology</subject><subject>tetrachlorodibenzo-p-dioxin</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Transcription activation</subject><subject>transcriptional activation</subject><subject>Vertebrates</subject><subject>Xenobiotics</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV2LEzEUhoMobl299k4C3qzIdPMxJ53eLJTifsAuiih4F06TM3aW6aSbzAj992ZsLauwVwnkOU-S92XsrRRTKZQ8R5emlPrpfCVAS_WMTSQoUUAF8jmbCCF1Mdfmxwl7ldK9EEJpUb1kJ1pWoGQlJuzhLrTkhhYjx87zy6FzfRM6bPmXGLYU-4YSDzXv18QXfYtd3zi-DJ6fXaEfEt-EuB7wA1_EXcuvdz4Gh3EVOv6VHG37EBNfrKPEP_a8U_iavaixTfTmsJ6y75efvi2vi9vPVzfLxW2B5Vz0RQ0lqMop8FQbo-oZmJlXjsjU2pEXQEgleFmq2hvUqFTlCaSGUjoNK9Cn7GLv3Q6rDXlHXR-xtdvYbDDubMDG_nvSNWv7M_yyMyE06FFwdhDE8DDklO2mSY7aHAKFIVkFRoJWlZln9P1_6H0YYk4xU7oslRFVOQrP95SLIaVI9fExUtixTpvrtOP0oc488e7xH4783_4y8HEPjJPHO5_S_QbRBavR</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Aranguren-Abadía, Libe</creator><creator>Lille-Langøy, Roger</creator><creator>Madsen, Alexander K</creator><creator>Karchner, Sibel I</creator><creator>Franks, Diana G</creator><creator>Yadetie, Fekadu</creator><creator>Hahn, Mark E</creator><creator>Goksøyr, Anders</creator><creator>Karlsen, Odd André</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0075-6601</orcidid><orcidid>https://orcid.org/0000-0003-4358-2082</orcidid></search><sort><creationdate>20200121</creationdate><title>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</title><author>Aranguren-Abadía, Libe ; Lille-Langøy, Roger ; Madsen, Alexander K ; Karchner, Sibel I ; Franks, Diana G ; Yadetie, Fekadu ; Hahn, Mark E ; Goksøyr, Anders ; Karlsen, Odd André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agonists</topic><topic>Animals</topic><topic>Aromatic compounds</topic><topic>Aryl hydrocarbon receptors</topic><topic>Binding</topic><topic>Carbazole</topic><topic>Carbazoles</topic><topic>CYP1A protein</topic><topic>Cytochrome P450</topic><topic>Dioxins</topic><topic>ecotoxicology</topic><topic>environmental science</topic><topic>Gadus morhua</topic><topic>Genomes</topic><topic>Halogenated hydrocarbons</topic><topic>Hydrocarbons</topic><topic>liver</topic><topic>Naphthoflavone</topic><topic>Phylogeny</topic><topic>Polychlorinated Dibenzodioxins</topic><topic>Polycyclic Aromatic Hydrocarbons</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, Aryl Hydrocarbon</topic><topic>Reporter gene</topic><topic>reporter genes</topic><topic>Signal transduction</topic><topic>TCDD</topic><topic>technology</topic><topic>tetrachlorodibenzo-p-dioxin</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Transcription activation</topic><topic>transcriptional activation</topic><topic>Vertebrates</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aranguren-Abadía, Libe</creatorcontrib><creatorcontrib>Lille-Langøy, Roger</creatorcontrib><creatorcontrib>Madsen, Alexander K</creatorcontrib><creatorcontrib>Karchner, Sibel I</creatorcontrib><creatorcontrib>Franks, Diana G</creatorcontrib><creatorcontrib>Yadetie, Fekadu</creatorcontrib><creatorcontrib>Hahn, Mark E</creatorcontrib><creatorcontrib>Goksøyr, Anders</creatorcontrib><creatorcontrib>Karlsen, Odd André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aranguren-Abadía, Libe</au><au>Lille-Langøy, Roger</au><au>Madsen, Alexander K</au><au>Karchner, Sibel I</au><au>Franks, Diana G</au><au>Yadetie, Fekadu</au><au>Hahn, Mark E</au><au>Goksøyr, Anders</au><au>Karlsen, Odd André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>54</volume><issue>2</issue><spage>1033</spage><epage>1044</epage><pages>1033-1044</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo­[3,2-b]­carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31852180</pmid><doi>10.1021/acs.est.9b05312</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0075-6601</orcidid><orcidid>https://orcid.org/0000-0003-4358-2082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-01, Vol.54 (2), p.1033-1044
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_journals_2344260845
source MEDLINE; ACS Publications
subjects Agonists
Animals
Aromatic compounds
Aryl hydrocarbon receptors
Binding
Carbazole
Carbazoles
CYP1A protein
Cytochrome P450
Dioxins
ecotoxicology
environmental science
Gadus morhua
Genomes
Halogenated hydrocarbons
Hydrocarbons
liver
Naphthoflavone
Phylogeny
Polychlorinated Dibenzodioxins
Polycyclic Aromatic Hydrocarbons
Proteins
Receptor mechanisms
Receptors
Receptors, Aryl Hydrocarbon
Reporter gene
reporter genes
Signal transduction
TCDD
technology
tetrachlorodibenzo-p-dioxin
Toxicity
Toxicology
Transcription activation
transcriptional activation
Vertebrates
Xenobiotics
title Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20and%20Functional%20Properties%20of%20the%20Atlantic%20Cod%20(Gadus%20morhua)%20Aryl%20Hydrocarbon%20Receptors%20Ahr1a%20and%20Ahr2a&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Aranguren-Abadi%CC%81a,%20Libe&rft.date=2020-01-21&rft.volume=54&rft.issue=2&rft.spage=1033&rft.epage=1044&rft.pages=1033-1044&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05312&rft_dat=%3Cproquest_pubme%3E2344260845%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344260845&rft_id=info:pmid/31852180&rfr_iscdi=true