Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowle...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-01, Vol.54 (2), p.1033-1044 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | 2 |
container_start_page | 1033 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Aranguren-Abadía, Libe Lille-Langøy, Roger Madsen, Alexander K Karchner, Sibel I Franks, Diana G Yadetie, Fekadu Hahn, Mark E Goksøyr, Anders Karlsen, Odd André |
description | The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s. |
doi_str_mv | 10.1021/acs.est.9b05312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2344260845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344260845</sourcerecordid><originalsourceid>FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</originalsourceid><addsrcrecordid>eNp1kV2LEzEUhoMobl299k4C3qzIdPMxJ53eLJTifsAuiih4F06TM3aW6aSbzAj992ZsLauwVwnkOU-S92XsrRRTKZQ8R5emlPrpfCVAS_WMTSQoUUAF8jmbCCF1Mdfmxwl7ldK9EEJpUb1kJ1pWoGQlJuzhLrTkhhYjx87zy6FzfRM6bPmXGLYU-4YSDzXv18QXfYtd3zi-DJ6fXaEfEt-EuB7wA1_EXcuvdz4Gh3EVOv6VHG37EBNfrKPEP_a8U_iavaixTfTmsJ6y75efvi2vi9vPVzfLxW2B5Vz0RQ0lqMop8FQbo-oZmJlXjsjU2pEXQEgleFmq2hvUqFTlCaSGUjoNK9Cn7GLv3Q6rDXlHXR-xtdvYbDDubMDG_nvSNWv7M_yyMyE06FFwdhDE8DDklO2mSY7aHAKFIVkFRoJWlZln9P1_6H0YYk4xU7oslRFVOQrP95SLIaVI9fExUtixTpvrtOP0oc488e7xH4783_4y8HEPjJPHO5_S_QbRBavR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344260845</pqid></control><display><type>article</type><title>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</title><source>MEDLINE</source><source>ACS Publications</source><creator>Aranguren-Abadía, Libe ; Lille-Langøy, Roger ; Madsen, Alexander K ; Karchner, Sibel I ; Franks, Diana G ; Yadetie, Fekadu ; Hahn, Mark E ; Goksøyr, Anders ; Karlsen, Odd André</creator><creatorcontrib>Aranguren-Abadía, Libe ; Lille-Langøy, Roger ; Madsen, Alexander K ; Karchner, Sibel I ; Franks, Diana G ; Yadetie, Fekadu ; Hahn, Mark E ; Goksøyr, Anders ; Karlsen, Odd André</creatorcontrib><description>The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05312</identifier><identifier>PMID: 31852180</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agonists ; Animals ; Aromatic compounds ; Aryl hydrocarbon receptors ; Binding ; Carbazole ; Carbazoles ; CYP1A protein ; Cytochrome P450 ; Dioxins ; ecotoxicology ; environmental science ; Gadus morhua ; Genomes ; Halogenated hydrocarbons ; Hydrocarbons ; liver ; Naphthoflavone ; Phylogeny ; Polychlorinated Dibenzodioxins ; Polycyclic Aromatic Hydrocarbons ; Proteins ; Receptor mechanisms ; Receptors ; Receptors, Aryl Hydrocarbon ; Reporter gene ; reporter genes ; Signal transduction ; TCDD ; technology ; tetrachlorodibenzo-p-dioxin ; Toxicity ; Toxicology ; Transcription activation ; transcriptional activation ; Vertebrates ; Xenobiotics</subject><ispartof>Environmental science & technology, 2020-01, Vol.54 (2), p.1033-1044</ispartof><rights>Copyright American Chemical Society Jan 21, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</citedby><cites>FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</cites><orcidid>0000-0003-0075-6601 ; 0000-0003-4358-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05312$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05312$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31852180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aranguren-Abadía, Libe</creatorcontrib><creatorcontrib>Lille-Langøy, Roger</creatorcontrib><creatorcontrib>Madsen, Alexander K</creatorcontrib><creatorcontrib>Karchner, Sibel I</creatorcontrib><creatorcontrib>Franks, Diana G</creatorcontrib><creatorcontrib>Yadetie, Fekadu</creatorcontrib><creatorcontrib>Hahn, Mark E</creatorcontrib><creatorcontrib>Goksøyr, Anders</creatorcontrib><creatorcontrib>Karlsen, Odd André</creatorcontrib><title>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.</description><subject>Agonists</subject><subject>Animals</subject><subject>Aromatic compounds</subject><subject>Aryl hydrocarbon receptors</subject><subject>Binding</subject><subject>Carbazole</subject><subject>Carbazoles</subject><subject>CYP1A protein</subject><subject>Cytochrome P450</subject><subject>Dioxins</subject><subject>ecotoxicology</subject><subject>environmental science</subject><subject>Gadus morhua</subject><subject>Genomes</subject><subject>Halogenated hydrocarbons</subject><subject>Hydrocarbons</subject><subject>liver</subject><subject>Naphthoflavone</subject><subject>Phylogeny</subject><subject>Polychlorinated Dibenzodioxins</subject><subject>Polycyclic Aromatic Hydrocarbons</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, Aryl Hydrocarbon</subject><subject>Reporter gene</subject><subject>reporter genes</subject><subject>Signal transduction</subject><subject>TCDD</subject><subject>technology</subject><subject>tetrachlorodibenzo-p-dioxin</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Transcription activation</subject><subject>transcriptional activation</subject><subject>Vertebrates</subject><subject>Xenobiotics</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV2LEzEUhoMobl299k4C3qzIdPMxJ53eLJTifsAuiih4F06TM3aW6aSbzAj992ZsLauwVwnkOU-S92XsrRRTKZQ8R5emlPrpfCVAS_WMTSQoUUAF8jmbCCF1Mdfmxwl7ldK9EEJpUb1kJ1pWoGQlJuzhLrTkhhYjx87zy6FzfRM6bPmXGLYU-4YSDzXv18QXfYtd3zi-DJ6fXaEfEt-EuB7wA1_EXcuvdz4Gh3EVOv6VHG37EBNfrKPEP_a8U_iavaixTfTmsJ6y75efvi2vi9vPVzfLxW2B5Vz0RQ0lqMop8FQbo-oZmJlXjsjU2pEXQEgleFmq2hvUqFTlCaSGUjoNK9Cn7GLv3Q6rDXlHXR-xtdvYbDDubMDG_nvSNWv7M_yyMyE06FFwdhDE8DDklO2mSY7aHAKFIVkFRoJWlZln9P1_6H0YYk4xU7oslRFVOQrP95SLIaVI9fExUtixTpvrtOP0oc488e7xH4783_4y8HEPjJPHO5_S_QbRBavR</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Aranguren-Abadía, Libe</creator><creator>Lille-Langøy, Roger</creator><creator>Madsen, Alexander K</creator><creator>Karchner, Sibel I</creator><creator>Franks, Diana G</creator><creator>Yadetie, Fekadu</creator><creator>Hahn, Mark E</creator><creator>Goksøyr, Anders</creator><creator>Karlsen, Odd André</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0075-6601</orcidid><orcidid>https://orcid.org/0000-0003-4358-2082</orcidid></search><sort><creationdate>20200121</creationdate><title>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</title><author>Aranguren-Abadía, Libe ; Lille-Langøy, Roger ; Madsen, Alexander K ; Karchner, Sibel I ; Franks, Diana G ; Yadetie, Fekadu ; Hahn, Mark E ; Goksøyr, Anders ; Karlsen, Odd André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a490t-f54528c25def662f7567d2cee6f3ced05eae45d142fd6a3a228de513541c35b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agonists</topic><topic>Animals</topic><topic>Aromatic compounds</topic><topic>Aryl hydrocarbon receptors</topic><topic>Binding</topic><topic>Carbazole</topic><topic>Carbazoles</topic><topic>CYP1A protein</topic><topic>Cytochrome P450</topic><topic>Dioxins</topic><topic>ecotoxicology</topic><topic>environmental science</topic><topic>Gadus morhua</topic><topic>Genomes</topic><topic>Halogenated hydrocarbons</topic><topic>Hydrocarbons</topic><topic>liver</topic><topic>Naphthoflavone</topic><topic>Phylogeny</topic><topic>Polychlorinated Dibenzodioxins</topic><topic>Polycyclic Aromatic Hydrocarbons</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, Aryl Hydrocarbon</topic><topic>Reporter gene</topic><topic>reporter genes</topic><topic>Signal transduction</topic><topic>TCDD</topic><topic>technology</topic><topic>tetrachlorodibenzo-p-dioxin</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Transcription activation</topic><topic>transcriptional activation</topic><topic>Vertebrates</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aranguren-Abadía, Libe</creatorcontrib><creatorcontrib>Lille-Langøy, Roger</creatorcontrib><creatorcontrib>Madsen, Alexander K</creatorcontrib><creatorcontrib>Karchner, Sibel I</creatorcontrib><creatorcontrib>Franks, Diana G</creatorcontrib><creatorcontrib>Yadetie, Fekadu</creatorcontrib><creatorcontrib>Hahn, Mark E</creatorcontrib><creatorcontrib>Goksøyr, Anders</creatorcontrib><creatorcontrib>Karlsen, Odd André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aranguren-Abadía, Libe</au><au>Lille-Langøy, Roger</au><au>Madsen, Alexander K</au><au>Karchner, Sibel I</au><au>Franks, Diana G</au><au>Yadetie, Fekadu</au><au>Hahn, Mark E</au><au>Goksøyr, Anders</au><au>Karlsen, Odd André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>54</volume><issue>2</issue><spage>1033</spage><epage>1044</epage><pages>1033-1044</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr’s with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr’s.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31852180</pmid><doi>10.1021/acs.est.9b05312</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0075-6601</orcidid><orcidid>https://orcid.org/0000-0003-4358-2082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-01, Vol.54 (2), p.1033-1044 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2344260845 |
source | MEDLINE; ACS Publications |
subjects | Agonists Animals Aromatic compounds Aryl hydrocarbon receptors Binding Carbazole Carbazoles CYP1A protein Cytochrome P450 Dioxins ecotoxicology environmental science Gadus morhua Genomes Halogenated hydrocarbons Hydrocarbons liver Naphthoflavone Phylogeny Polychlorinated Dibenzodioxins Polycyclic Aromatic Hydrocarbons Proteins Receptor mechanisms Receptors Receptors, Aryl Hydrocarbon Reporter gene reporter genes Signal transduction TCDD technology tetrachlorodibenzo-p-dioxin Toxicity Toxicology Transcription activation transcriptional activation Vertebrates Xenobiotics |
title | Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20and%20Functional%20Properties%20of%20the%20Atlantic%20Cod%20(Gadus%20morhua)%20Aryl%20Hydrocarbon%20Receptors%20Ahr1a%20and%20Ahr2a&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Aranguren-Abadi%CC%81a,%20Libe&rft.date=2020-01-21&rft.volume=54&rft.issue=2&rft.spage=1033&rft.epage=1044&rft.pages=1033-1044&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05312&rft_dat=%3Cproquest_pubme%3E2344260845%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344260845&rft_id=info:pmid/31852180&rfr_iscdi=true |