Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise

A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2020, Vol.178 (2), p.392-419
Hauptverfasser: Antonov, N. V., Kakin, P. I., Lebedev, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 2
container_start_page 392
container_title Journal of statistical physics
container_volume 178
creator Antonov, N. V.
Kakin, P. I.
Lebedev, N. M.
description A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding ε expansions. Some exact values and relations for these exponents are obtained.
doi_str_mv 10.1007/s10955-019-02436-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2344259361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612151141</galeid><sourcerecordid>A612151141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQgIMoOKf_gE8Bn6uXpGmTxyH-gqno9DmkabpldE1NOmT-9WZW8E3u4eDuvuPuQ-icwCUBKK8iAcl5BkRmQHNWZOIATQgvaSYLwg7RBIDSLC8JP0YnMa4BQArJJ6heDHpwBs_6PnhtVnjw-NV2Pmx0675Sy3f4Lvhtj2edbnfRRewbvBi8Wem4Bx99bduIP92wwos-Abptd_hlazuzsjV-8i7aU3TU6Dbas988Re-3N2_X99n8-e7hejbPDONiyEhlK0GYrkgJxrKGUyNk1WihyzovwBjZFJSVlSwrLQyUXICtBSMaaG0kr9gUXYx70y8fWxsHtfbbkO6OirI8p1yyZGOKLseppW6tcl3jh6BNitpunPGdbVyqzwpCCSck3wN0BEzwMQbbqD64jQ47RUDt9atRv0r61Y9-JRLERiim4W5pw98t_1Df02OI2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344259361</pqid></control><display><type>article</type><title>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Antonov, N. V. ; Kakin, P. I. ; Lebedev, N. M.</creator><creatorcontrib>Antonov, N. V. ; Kakin, P. I. ; Lebedev, N. M.</creatorcontrib><description>A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding ε expansions. Some exact values and relations for these exponents are obtained.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-019-02436-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Exponents ; Mathematical and Computational Physics ; Noise ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Quenching ; Statistical Physics and Dynamical Systems ; Stochastic models ; Theoretical ; Variation</subject><ispartof>Journal of statistical physics, 2020, Vol.178 (2), p.392-419</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</citedby><cites>FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</cites><orcidid>0000-0003-1053-2476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-019-02436-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-019-02436-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Antonov, N. V.</creatorcontrib><creatorcontrib>Kakin, P. I.</creatorcontrib><creatorcontrib>Lebedev, N. M.</creatorcontrib><title>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding ε expansions. Some exact values and relations for these exponents are obtained.</description><subject>Exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Noise</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Quenching</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stochastic models</subject><subject>Theoretical</subject><subject>Variation</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQgIMoOKf_gE8Bn6uXpGmTxyH-gqno9DmkabpldE1NOmT-9WZW8E3u4eDuvuPuQ-icwCUBKK8iAcl5BkRmQHNWZOIATQgvaSYLwg7RBIDSLC8JP0YnMa4BQArJJ6heDHpwBs_6PnhtVnjw-NV2Pmx0675Sy3f4Lvhtj2edbnfRRewbvBi8Wem4Bx99bduIP92wwos-Abptd_hlazuzsjV-8i7aU3TU6Dbas988Re-3N2_X99n8-e7hejbPDONiyEhlK0GYrkgJxrKGUyNk1WihyzovwBjZFJSVlSwrLQyUXICtBSMaaG0kr9gUXYx70y8fWxsHtfbbkO6OirI8p1yyZGOKLseppW6tcl3jh6BNitpunPGdbVyqzwpCCSck3wN0BEzwMQbbqD64jQ47RUDt9atRv0r61Y9-JRLERiim4W5pw98t_1Df02OI2A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Antonov, N. V.</creator><creator>Kakin, P. I.</creator><creator>Lebedev, N. M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1053-2476</orcidid></search><sort><creationdate>2020</creationdate><title>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</title><author>Antonov, N. V. ; Kakin, P. I. ; Lebedev, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Noise</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Quenching</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stochastic models</topic><topic>Theoretical</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonov, N. V.</creatorcontrib><creatorcontrib>Kakin, P. I.</creatorcontrib><creatorcontrib>Lebedev, N. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, N. V.</au><au>Kakin, P. I.</au><au>Lebedev, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020</date><risdate>2020</risdate><volume>178</volume><issue>2</issue><spage>392</spage><epage>419</epage><pages>392-419</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding ε expansions. Some exact values and relations for these exponents are obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-019-02436-8</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-1053-2476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2020, Vol.178 (2), p.392-419
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2344259361
source SpringerLink Journals - AutoHoldings
subjects Exponents
Mathematical and Computational Physics
Noise
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Quenching
Statistical Physics and Dynamical Systems
Stochastic models
Theoretical
Variation
title Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20Approach%20to%20Renormalization%20Group%20Analysis%20of%20Stochastic%20Models%20with%20Spatially%20Quenched%20Noise&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Antonov,%20N.%20V.&rft.date=2020&rft.volume=178&rft.issue=2&rft.spage=392&rft.epage=419&rft.pages=392-419&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-019-02436-8&rft_dat=%3Cgale_proqu%3EA612151141%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344259361&rft_id=info:pmid/&rft_galeid=A612151141&rfr_iscdi=true