Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise
A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar m...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2020, Vol.178 (2), p.392-419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 2 |
container_start_page | 392 |
container_title | Journal of statistical physics |
container_volume | 178 |
creator | Antonov, N. V. Kakin, P. I. Lebedev, N. M. |
description | A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding
ε
expansions. Some exact values and relations for these exponents are obtained. |
doi_str_mv | 10.1007/s10955-019-02436-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2344259361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612151141</galeid><sourcerecordid>A612151141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQgIMoOKf_gE8Bn6uXpGmTxyH-gqno9DmkabpldE1NOmT-9WZW8E3u4eDuvuPuQ-icwCUBKK8iAcl5BkRmQHNWZOIATQgvaSYLwg7RBIDSLC8JP0YnMa4BQArJJ6heDHpwBs_6PnhtVnjw-NV2Pmx0675Sy3f4Lvhtj2edbnfRRewbvBi8Wem4Bx99bduIP92wwos-Abptd_hlazuzsjV-8i7aU3TU6Dbas988Re-3N2_X99n8-e7hejbPDONiyEhlK0GYrkgJxrKGUyNk1WihyzovwBjZFJSVlSwrLQyUXICtBSMaaG0kr9gUXYx70y8fWxsHtfbbkO6OirI8p1yyZGOKLseppW6tcl3jh6BNitpunPGdbVyqzwpCCSck3wN0BEzwMQbbqD64jQ47RUDt9atRv0r61Y9-JRLERiim4W5pw98t_1Df02OI2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344259361</pqid></control><display><type>article</type><title>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Antonov, N. V. ; Kakin, P. I. ; Lebedev, N. M.</creator><creatorcontrib>Antonov, N. V. ; Kakin, P. I. ; Lebedev, N. M.</creatorcontrib><description>A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding
ε
expansions. Some exact values and relations for these exponents are obtained.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-019-02436-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Exponents ; Mathematical and Computational Physics ; Noise ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Quenching ; Statistical Physics and Dynamical Systems ; Stochastic models ; Theoretical ; Variation</subject><ispartof>Journal of statistical physics, 2020, Vol.178 (2), p.392-419</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</citedby><cites>FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</cites><orcidid>0000-0003-1053-2476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-019-02436-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-019-02436-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Antonov, N. V.</creatorcontrib><creatorcontrib>Kakin, P. I.</creatorcontrib><creatorcontrib>Lebedev, N. M.</creatorcontrib><title>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding
ε
expansions. Some exact values and relations for these exponents are obtained.</description><subject>Exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Noise</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Quenching</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stochastic models</subject><subject>Theoretical</subject><subject>Variation</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQgIMoOKf_gE8Bn6uXpGmTxyH-gqno9DmkabpldE1NOmT-9WZW8E3u4eDuvuPuQ-icwCUBKK8iAcl5BkRmQHNWZOIATQgvaSYLwg7RBIDSLC8JP0YnMa4BQArJJ6heDHpwBs_6PnhtVnjw-NV2Pmx0675Sy3f4Lvhtj2edbnfRRewbvBi8Wem4Bx99bduIP92wwos-Abptd_hlazuzsjV-8i7aU3TU6Dbas988Re-3N2_X99n8-e7hejbPDONiyEhlK0GYrkgJxrKGUyNk1WihyzovwBjZFJSVlSwrLQyUXICtBSMaaG0kr9gUXYx70y8fWxsHtfbbkO6OirI8p1yyZGOKLseppW6tcl3jh6BNitpunPGdbVyqzwpCCSck3wN0BEzwMQbbqD64jQ47RUDt9atRv0r61Y9-JRLERiim4W5pw98t_1Df02OI2A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Antonov, N. V.</creator><creator>Kakin, P. I.</creator><creator>Lebedev, N. M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1053-2476</orcidid></search><sort><creationdate>2020</creationdate><title>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</title><author>Antonov, N. V. ; Kakin, P. I. ; Lebedev, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1beb813ab170ce3f52c89bfa8a7d460cc9f6237b97ba8c07580ed831a02dc95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Noise</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Quenching</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stochastic models</topic><topic>Theoretical</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonov, N. V.</creatorcontrib><creatorcontrib>Kakin, P. I.</creatorcontrib><creatorcontrib>Lebedev, N. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, N. V.</au><au>Kakin, P. I.</au><au>Lebedev, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020</date><risdate>2020</risdate><volume>178</volume><issue>2</issue><spage>392</spage><epage>419</epage><pages>392-419</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding
ε
expansions. Some exact values and relations for these exponents are obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-019-02436-8</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-1053-2476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2020, Vol.178 (2), p.392-419 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2344259361 |
source | SpringerLink Journals - AutoHoldings |
subjects | Exponents Mathematical and Computational Physics Noise Physical Chemistry Physics Physics and Astronomy Quantum Physics Quenching Statistical Physics and Dynamical Systems Stochastic models Theoretical Variation |
title | Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20Approach%20to%20Renormalization%20Group%20Analysis%20of%20Stochastic%20Models%20with%20Spatially%20Quenched%20Noise&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Antonov,%20N.%20V.&rft.date=2020&rft.volume=178&rft.issue=2&rft.spage=392&rft.epage=419&rft.pages=392-419&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-019-02436-8&rft_dat=%3Cgale_proqu%3EA612151141%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344259361&rft_id=info:pmid/&rft_galeid=A612151141&rfr_iscdi=true |