Mie‐Resonant Membrane Huygens' Metasurfaces
All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often d...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-01, Vol.30 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Yang, Quanlong Kruk, Sergey Xu, Yuehong Wang, Qingwei Srivastava, Yogesh Kumar Koshelev, Kirill Kravchenko, Ivan Singh, Ranjan Han, Jiaguang Kivshar, Yuri Shadrivov, Ilya |
description | All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.
Highly efficient metasurfaces in the form of freestanding membranes are proposed and demonstrated. They support Mie resonances and form Huygens' metasurfaces offering a 2π transmission phase coverage. Proposed perforated membranes control electromagnetic wave propagation and can act as lenses, prisms, and axicons. The absence of a substrate is particularly beneficial for the terahertz frequency range. |
doi_str_mv | 10.1002/adfm.201906851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344236678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344236678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4231-92bd5c8775397511087c89981b940156a906e790051bbf372dba4233f177d0643</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQhxdRsFavngsePKXO7Gb_HUu1VmgQRMHbskk20tIkdbdBcvMRfEafxC2VevQ0w_B9M8OPkEuEMQLQG1tW9ZgCahCK4xEZoECRMKDq-NDj6yk5C2EFgFKydECSbOm-P7-eXGgb22xHmatzbxs3mnf9m2vCdZxsbeh8ZQsXzslJZdfBXfzWIXmZ3T1P58ni8f5hOlkkRUoZJprmJS-UlJxpyRFByUJprTDXKSAXNr7opAbgmOcVk7TMbRRZFZ8qQaRsSK72eze-fe9c2JpV2_kmnjSUpREVQqpIjfdU4dsQvKvMxi9r63uDYHaRmF0k5hBJFPRe-FiuXf8PbSa3s-zP_QGJdmL7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344236678</pqid></control><display><type>article</type><title>Mie‐Resonant Membrane Huygens' Metasurfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Quanlong ; Kruk, Sergey ; Xu, Yuehong ; Wang, Qingwei ; Srivastava, Yogesh Kumar ; Koshelev, Kirill ; Kravchenko, Ivan ; Singh, Ranjan ; Han, Jiaguang ; Kivshar, Yuri ; Shadrivov, Ilya</creator><creatorcontrib>Yang, Quanlong ; Kruk, Sergey ; Xu, Yuehong ; Wang, Qingwei ; Srivastava, Yogesh Kumar ; Koshelev, Kirill ; Kravchenko, Ivan ; Singh, Ranjan ; Han, Jiaguang ; Kivshar, Yuri ; Shadrivov, Ilya</creatorcontrib><description>All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.
Highly efficient metasurfaces in the form of freestanding membranes are proposed and demonstrated. They support Mie resonances and form Huygens' metasurfaces offering a 2π transmission phase coverage. Proposed perforated membranes control electromagnetic wave propagation and can act as lenses, prisms, and axicons. The absence of a substrate is particularly beneficial for the terahertz frequency range.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201906851</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐dielectric ; Chemical composition ; Dielectrics ; Magnetic resonance ; Materials science ; Membranes ; Metasurfaces ; Mie resonance ; Organic chemistry ; Substrates ; terahertz ; Terahertz frequencies ; Wave front control ; Wave fronts ; Wave propagation</subject><ispartof>Advanced functional materials, 2020-01, Vol.30 (4), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4231-92bd5c8775397511087c89981b940156a906e790051bbf372dba4233f177d0643</citedby><cites>FETCH-LOGICAL-c4231-92bd5c8775397511087c89981b940156a906e790051bbf372dba4233f177d0643</cites><orcidid>0000-0003-0624-4033 ; 0000-0002-8702-0121 ; 0000-0003-4999-5822 ; 0000-0001-9425-9635 ; 0000-0002-3325-3552 ; 0000-0001-7475-1024 ; 0000-0002-9947-5377 ; 0000-0001-8068-7428 ; 0000-0002-3410-812X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201906851$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201906851$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Quanlong</creatorcontrib><creatorcontrib>Kruk, Sergey</creatorcontrib><creatorcontrib>Xu, Yuehong</creatorcontrib><creatorcontrib>Wang, Qingwei</creatorcontrib><creatorcontrib>Srivastava, Yogesh Kumar</creatorcontrib><creatorcontrib>Koshelev, Kirill</creatorcontrib><creatorcontrib>Kravchenko, Ivan</creatorcontrib><creatorcontrib>Singh, Ranjan</creatorcontrib><creatorcontrib>Han, Jiaguang</creatorcontrib><creatorcontrib>Kivshar, Yuri</creatorcontrib><creatorcontrib>Shadrivov, Ilya</creatorcontrib><title>Mie‐Resonant Membrane Huygens' Metasurfaces</title><title>Advanced functional materials</title><description>All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.
Highly efficient metasurfaces in the form of freestanding membranes are proposed and demonstrated. They support Mie resonances and form Huygens' metasurfaces offering a 2π transmission phase coverage. Proposed perforated membranes control electromagnetic wave propagation and can act as lenses, prisms, and axicons. The absence of a substrate is particularly beneficial for the terahertz frequency range.</description><subject>all‐dielectric</subject><subject>Chemical composition</subject><subject>Dielectrics</subject><subject>Magnetic resonance</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Metasurfaces</subject><subject>Mie resonance</subject><subject>Organic chemistry</subject><subject>Substrates</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><subject>Wave front control</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQhxdRsFavngsePKXO7Gb_HUu1VmgQRMHbskk20tIkdbdBcvMRfEafxC2VevQ0w_B9M8OPkEuEMQLQG1tW9ZgCahCK4xEZoECRMKDq-NDj6yk5C2EFgFKydECSbOm-P7-eXGgb22xHmatzbxs3mnf9m2vCdZxsbeh8ZQsXzslJZdfBXfzWIXmZ3T1P58ni8f5hOlkkRUoZJprmJS-UlJxpyRFByUJprTDXKSAXNr7opAbgmOcVk7TMbRRZFZ8qQaRsSK72eze-fe9c2JpV2_kmnjSUpREVQqpIjfdU4dsQvKvMxi9r63uDYHaRmF0k5hBJFPRe-FiuXf8PbSa3s-zP_QGJdmL7</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yang, Quanlong</creator><creator>Kruk, Sergey</creator><creator>Xu, Yuehong</creator><creator>Wang, Qingwei</creator><creator>Srivastava, Yogesh Kumar</creator><creator>Koshelev, Kirill</creator><creator>Kravchenko, Ivan</creator><creator>Singh, Ranjan</creator><creator>Han, Jiaguang</creator><creator>Kivshar, Yuri</creator><creator>Shadrivov, Ilya</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0624-4033</orcidid><orcidid>https://orcid.org/0000-0002-8702-0121</orcidid><orcidid>https://orcid.org/0000-0003-4999-5822</orcidid><orcidid>https://orcid.org/0000-0001-9425-9635</orcidid><orcidid>https://orcid.org/0000-0002-3325-3552</orcidid><orcidid>https://orcid.org/0000-0001-7475-1024</orcidid><orcidid>https://orcid.org/0000-0002-9947-5377</orcidid><orcidid>https://orcid.org/0000-0001-8068-7428</orcidid><orcidid>https://orcid.org/0000-0002-3410-812X</orcidid></search><sort><creationdate>20200101</creationdate><title>Mie‐Resonant Membrane Huygens' Metasurfaces</title><author>Yang, Quanlong ; Kruk, Sergey ; Xu, Yuehong ; Wang, Qingwei ; Srivastava, Yogesh Kumar ; Koshelev, Kirill ; Kravchenko, Ivan ; Singh, Ranjan ; Han, Jiaguang ; Kivshar, Yuri ; Shadrivov, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4231-92bd5c8775397511087c89981b940156a906e790051bbf372dba4233f177d0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>all‐dielectric</topic><topic>Chemical composition</topic><topic>Dielectrics</topic><topic>Magnetic resonance</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Metasurfaces</topic><topic>Mie resonance</topic><topic>Organic chemistry</topic><topic>Substrates</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><topic>Wave front control</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Quanlong</creatorcontrib><creatorcontrib>Kruk, Sergey</creatorcontrib><creatorcontrib>Xu, Yuehong</creatorcontrib><creatorcontrib>Wang, Qingwei</creatorcontrib><creatorcontrib>Srivastava, Yogesh Kumar</creatorcontrib><creatorcontrib>Koshelev, Kirill</creatorcontrib><creatorcontrib>Kravchenko, Ivan</creatorcontrib><creatorcontrib>Singh, Ranjan</creatorcontrib><creatorcontrib>Han, Jiaguang</creatorcontrib><creatorcontrib>Kivshar, Yuri</creatorcontrib><creatorcontrib>Shadrivov, Ilya</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Quanlong</au><au>Kruk, Sergey</au><au>Xu, Yuehong</au><au>Wang, Qingwei</au><au>Srivastava, Yogesh Kumar</au><au>Koshelev, Kirill</au><au>Kravchenko, Ivan</au><au>Singh, Ranjan</au><au>Han, Jiaguang</au><au>Kivshar, Yuri</au><au>Shadrivov, Ilya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mie‐Resonant Membrane Huygens' Metasurfaces</atitle><jtitle>Advanced functional materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.
Highly efficient metasurfaces in the form of freestanding membranes are proposed and demonstrated. They support Mie resonances and form Huygens' metasurfaces offering a 2π transmission phase coverage. Proposed perforated membranes control electromagnetic wave propagation and can act as lenses, prisms, and axicons. The absence of a substrate is particularly beneficial for the terahertz frequency range.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201906851</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0624-4033</orcidid><orcidid>https://orcid.org/0000-0002-8702-0121</orcidid><orcidid>https://orcid.org/0000-0003-4999-5822</orcidid><orcidid>https://orcid.org/0000-0001-9425-9635</orcidid><orcidid>https://orcid.org/0000-0002-3325-3552</orcidid><orcidid>https://orcid.org/0000-0001-7475-1024</orcidid><orcidid>https://orcid.org/0000-0002-9947-5377</orcidid><orcidid>https://orcid.org/0000-0001-8068-7428</orcidid><orcidid>https://orcid.org/0000-0002-3410-812X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-01, Vol.30 (4), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2344236678 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | all‐dielectric Chemical composition Dielectrics Magnetic resonance Materials science Membranes Metasurfaces Mie resonance Organic chemistry Substrates terahertz Terahertz frequencies Wave front control Wave fronts Wave propagation |
title | Mie‐Resonant Membrane Huygens' Metasurfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mie%E2%80%90Resonant%20Membrane%20Huygens'%20Metasurfaces&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Quanlong&rft.date=2020-01-01&rft.volume=30&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201906851&rft_dat=%3Cproquest_cross%3E2344236678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344236678&rft_id=info:pmid/&rfr_iscdi=true |