Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))

The paper examines the effects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog ( Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mitochondria and decreases respiratory control ratio. In ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 2020-02, Vol.253 (1), p.1-10
Hauptverfasser: Dubinin, Mikhail V., Tenkov, Kirill S., Svinin, Anton O., Samartsev, Victor N., Belosludtsev, Konstantin N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title The Journal of membrane biology
container_volume 253
creator Dubinin, Mikhail V.
Tenkov, Kirill S.
Svinin, Anton O.
Samartsev, Victor N.
Belosludtsev, Konstantin N.
description The paper examines the effects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog ( Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mitochondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore effect and suppression of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecific permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan effect on marsh frog liver mitochondria and red blood cells are discussed. Graphic Abstract
doi_str_mv 10.1007/s00232-019-00099-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344218991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344218991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8b489493f7d95399b99f5829a94e95ff84cb4342c054cb43eaaf6b56949c59ed3</originalsourceid><addsrcrecordid>eNp9kctOGzEUhi1EBYH2BVhUltiA1Gl9zYyXCCVtpURlQdeWx2NnjCZ2anug8yx9WRwC7a4rW-e_nCN9AFxg9BkjVH9JCBFKKoRFhRASono6AjPMyggzwo7BrOikInOKT8FZSg8I4bqesxNwSjEXTc2bGfizsNboDIOF99HpISTlYfAw9wYuR6-zC975zV5fuUcT4drloPvgu-gUVL6DdyZujWrd4PK0ty3ilPsY9JQNXJttG5U3aS-sVUw9XMawgVd3Zgi7fhrUbxhd59rRd2MqYzUMKn2C5U58ff0evLNqSObD63sOfi4X97ffqtWPr99vb1aVpjXPVdOyRjBBbd0JToVohbC8IUIJZgS3tmG6ZZQRjfjLzyhl5y2fl4zmwnT0HFweencx_BpNyvIhjNGXlZJQxghuhMDFRQ4uHUNK0Vi5i26r4iQxknse8sBDFh7yhYd8KqGPr9VjuzXd38gbgGKgB0Mqkt-Y-G_3f2qfAeRklu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344218991</pqid></control><display><type>article</type><title>Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Dubinin, Mikhail V. ; Tenkov, Kirill S. ; Svinin, Anton O. ; Samartsev, Victor N. ; Belosludtsev, Konstantin N.</creator><creatorcontrib>Dubinin, Mikhail V. ; Tenkov, Kirill S. ; Svinin, Anton O. ; Samartsev, Victor N. ; Belosludtsev, Konstantin N.</creatorcontrib><description>The paper examines the effects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog ( Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mitochondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore effect and suppression of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecific permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan effect on marsh frog liver mitochondria and red blood cells are discussed. Graphic Abstract</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-019-00099-w</identifier><identifier>PMID: 31598758</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amphibians ; Animals ; Antimicrobial agents ; Biochemistry ; Biomedical and Life Sciences ; Cell Membrane Permeability - drug effects ; Cell Respiration - drug effects ; Collapse ; Dose-Response Relationship, Drug ; Electron transport chain ; Electron Transport Chain Complex Proteins - metabolism ; Erythrocyte Membrane - metabolism ; Erythrocytes ; Human Physiology ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Hydrogen production ; Life Sciences ; Liver ; Membrane permeability ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Membranes ; Mitochondria ; Mitochondria, Liver - drug effects ; Mitochondria, Liver - metabolism ; Oxidation ; Oxidative Phosphorylation - drug effects ; Pelophylax ridibundus ; Permeability ; Ranidae ; Substrates ; Triclosan ; Triclosan - pharmacology</subject><ispartof>The Journal of membrane biology, 2020-02, Vol.253 (1), p.1-10</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>The Journal of Membrane Biology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8b489493f7d95399b99f5829a94e95ff84cb4342c054cb43eaaf6b56949c59ed3</citedby><cites>FETCH-LOGICAL-c375t-8b489493f7d95399b99f5829a94e95ff84cb4342c054cb43eaaf6b56949c59ed3</cites><orcidid>0000-0002-7453-3390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00232-019-00099-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00232-019-00099-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31598758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubinin, Mikhail V.</creatorcontrib><creatorcontrib>Tenkov, Kirill S.</creatorcontrib><creatorcontrib>Svinin, Anton O.</creatorcontrib><creatorcontrib>Samartsev, Victor N.</creatorcontrib><creatorcontrib>Belosludtsev, Konstantin N.</creatorcontrib><title>Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))</title><title>The Journal of membrane biology</title><addtitle>J Membrane Biol</addtitle><addtitle>J Membr Biol</addtitle><description>The paper examines the effects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog ( Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mitochondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore effect and suppression of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecific permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan effect on marsh frog liver mitochondria and red blood cells are discussed. Graphic Abstract</description><subject>Amphibians</subject><subject>Animals</subject><subject>Antimicrobial agents</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell Respiration - drug effects</subject><subject>Collapse</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electron transport chain</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocytes</subject><subject>Human Physiology</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hydrogen production</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - drug effects</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Oxidation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Pelophylax ridibundus</subject><subject>Permeability</subject><subject>Ranidae</subject><subject>Substrates</subject><subject>Triclosan</subject><subject>Triclosan - pharmacology</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOGzEUhi1EBYH2BVhUltiA1Gl9zYyXCCVtpURlQdeWx2NnjCZ2anug8yx9WRwC7a4rW-e_nCN9AFxg9BkjVH9JCBFKKoRFhRASono6AjPMyggzwo7BrOikInOKT8FZSg8I4bqesxNwSjEXTc2bGfizsNboDIOF99HpISTlYfAw9wYuR6-zC975zV5fuUcT4drloPvgu-gUVL6DdyZujWrd4PK0ty3ilPsY9JQNXJttG5U3aS-sVUw9XMawgVd3Zgi7fhrUbxhd59rRd2MqYzUMKn2C5U58ff0evLNqSObD63sOfi4X97ffqtWPr99vb1aVpjXPVdOyRjBBbd0JToVohbC8IUIJZgS3tmG6ZZQRjfjLzyhl5y2fl4zmwnT0HFweencx_BpNyvIhjNGXlZJQxghuhMDFRQ4uHUNK0Vi5i26r4iQxknse8sBDFh7yhYd8KqGPr9VjuzXd38gbgGKgB0Mqkt-Y-G_3f2qfAeRklu4</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Dubinin, Mikhail V.</creator><creator>Tenkov, Kirill S.</creator><creator>Svinin, Anton O.</creator><creator>Samartsev, Victor N.</creator><creator>Belosludtsev, Konstantin N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7453-3390</orcidid></search><sort><creationdate>20200201</creationdate><title>Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))</title><author>Dubinin, Mikhail V. ; Tenkov, Kirill S. ; Svinin, Anton O. ; Samartsev, Victor N. ; Belosludtsev, Konstantin N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8b489493f7d95399b99f5829a94e95ff84cb4342c054cb43eaaf6b56949c59ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amphibians</topic><topic>Animals</topic><topic>Antimicrobial agents</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell Respiration - drug effects</topic><topic>Collapse</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electron transport chain</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocytes</topic><topic>Human Physiology</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hydrogen production</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - drug effects</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Oxidation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Pelophylax ridibundus</topic><topic>Permeability</topic><topic>Ranidae</topic><topic>Substrates</topic><topic>Triclosan</topic><topic>Triclosan - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinin, Mikhail V.</creatorcontrib><creatorcontrib>Tenkov, Kirill S.</creatorcontrib><creatorcontrib>Svinin, Anton O.</creatorcontrib><creatorcontrib>Samartsev, Victor N.</creatorcontrib><creatorcontrib>Belosludtsev, Konstantin N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinin, Mikhail V.</au><au>Tenkov, Kirill S.</au><au>Svinin, Anton O.</au><au>Samartsev, Victor N.</au><au>Belosludtsev, Konstantin N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))</atitle><jtitle>The Journal of membrane biology</jtitle><stitle>J Membrane Biol</stitle><addtitle>J Membr Biol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>253</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>The paper examines the effects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog ( Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mitochondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore effect and suppression of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecific permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan effect on marsh frog liver mitochondria and red blood cells are discussed. Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31598758</pmid><doi>10.1007/s00232-019-00099-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7453-3390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2631
ispartof The Journal of membrane biology, 2020-02, Vol.253 (1), p.1-10
issn 0022-2631
1432-1424
language eng
recordid cdi_proquest_journals_2344218991
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Amphibians
Animals
Antimicrobial agents
Biochemistry
Biomedical and Life Sciences
Cell Membrane Permeability - drug effects
Cell Respiration - drug effects
Collapse
Dose-Response Relationship, Drug
Electron transport chain
Electron Transport Chain Complex Proteins - metabolism
Erythrocyte Membrane - metabolism
Erythrocytes
Human Physiology
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Hydrogen production
Life Sciences
Liver
Membrane permeability
Membrane potential
Membrane Potential, Mitochondrial - drug effects
Membranes
Mitochondria
Mitochondria, Liver - drug effects
Mitochondria, Liver - metabolism
Oxidation
Oxidative Phosphorylation - drug effects
Pelophylax ridibundus
Permeability
Ranidae
Substrates
Triclosan
Triclosan - pharmacology
title Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Triclosan%20on%20the%20Functioning%20of%20Liver%20Mitochondria%20and%20Permeability%20of%20Erythrocyte%20Membranes%20of%20Marsh%20Frog%20(Pelophylax%20ridibundus%20(Pallas,%201771))&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Dubinin,%20Mikhail%20V.&rft.date=2020-02-01&rft.volume=253&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-019-00099-w&rft_dat=%3Cproquest_cross%3E2344218991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344218991&rft_id=info:pmid/31598758&rfr_iscdi=true