Integration of optimized feedrate into an online adaptive force controller for robot milling
Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutte...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-01, Vol.106 (3-4), p.1533-1542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1542 |
---|---|
container_issue | 3-4 |
container_start_page | 1533 |
container_title | International journal of advanced manufacturing technology |
container_volume | 106 |
creator | Xiong, Gang Li, Zhou-Long Ding, Ye Zhu, LiMin |
description | Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method. |
doi_str_mv | 10.1007/s00170-019-04691-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344184765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344184765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczSTZJPdoxT_FApeehRCNjtbtmyTmk0F_fRGK3jzNPDm994Mj5Br4LfAubmbOAfDGYeGcaUbYHBCZqCkZJJDdUpmXOiaSaPrc3IxTduCa9D1jLwuQ8ZNcnmIgcaexn0edsMndrRH7IqOdAg5Ule2YRwCUte5wrwj7WPySH0MOcVxxPQt0BTbmOluGAu7uSRnvRsnvPqdc7J-fFgvntnq5Wm5uF8xL6HJzJRvaqyw9ag0-EpA51qO3KnOYQXC1MIrVQluuMcWwDVGtLVujRON8EbOyc0xdp_i2wGnbLfxkEK5aIVUCmpldFUocaR8itOUsLf7NOxc-rDA7XeJ9liiLSXanxItFJM8mqYChw2mv-h_XF98VHVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344184765</pqid></control><display><type>article</type><title>Integration of optimized feedrate into an online adaptive force controller for robot milling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiong, Gang ; Li, Zhou-Long ; Ding, Ye ; Zhu, LiMin</creator><creatorcontrib>Xiong, Gang ; Li, Zhou-Long ; Ding, Ye ; Zhu, LiMin</creatorcontrib><description>Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04691-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive control ; CAE) and Design ; Computer-Aided Engineering (CAD ; Control systems design ; Control theory ; Controllers ; Cutting force ; Engineering ; Feed direction ; Feedforward control ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Proportional integral ; Robot control ; Robots</subject><ispartof>International journal of advanced manufacturing technology, 2020-01, Vol.106 (3-4), p.1533-1542</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</citedby><cites>FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04691-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04691-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xiong, Gang</creatorcontrib><creatorcontrib>Li, Zhou-Long</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><creatorcontrib>Zhu, LiMin</creatorcontrib><title>Integration of optimized feedrate into an online adaptive force controller for robot milling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.</description><subject>Adaptive control</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Cutting force</subject><subject>Engineering</subject><subject>Feed direction</subject><subject>Feedforward control</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Proportional integral</subject><subject>Robot control</subject><subject>Robots</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczSTZJPdoxT_FApeehRCNjtbtmyTmk0F_fRGK3jzNPDm994Mj5Br4LfAubmbOAfDGYeGcaUbYHBCZqCkZJJDdUpmXOiaSaPrc3IxTduCa9D1jLwuQ8ZNcnmIgcaexn0edsMndrRH7IqOdAg5Ule2YRwCUte5wrwj7WPySH0MOcVxxPQt0BTbmOluGAu7uSRnvRsnvPqdc7J-fFgvntnq5Wm5uF8xL6HJzJRvaqyw9ag0-EpA51qO3KnOYQXC1MIrVQluuMcWwDVGtLVujRON8EbOyc0xdp_i2wGnbLfxkEK5aIVUCmpldFUocaR8itOUsLf7NOxc-rDA7XeJ9liiLSXanxItFJM8mqYChw2mv-h_XF98VHVX</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Xiong, Gang</creator><creator>Li, Zhou-Long</creator><creator>Ding, Ye</creator><creator>Zhu, LiMin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200101</creationdate><title>Integration of optimized feedrate into an online adaptive force controller for robot milling</title><author>Xiong, Gang ; Li, Zhou-Long ; Ding, Ye ; Zhu, LiMin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Cutting force</topic><topic>Engineering</topic><topic>Feed direction</topic><topic>Feedforward control</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Proportional integral</topic><topic>Robot control</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Gang</creatorcontrib><creatorcontrib>Li, Zhou-Long</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><creatorcontrib>Zhu, LiMin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Gang</au><au>Li, Zhou-Long</au><au>Ding, Ye</au><au>Zhu, LiMin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of optimized feedrate into an online adaptive force controller for robot milling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>106</volume><issue>3-4</issue><spage>1533</spage><epage>1542</epage><pages>1533-1542</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04691-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-01, Vol.106 (3-4), p.1533-1542 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2344184765 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive control CAE) and Design Computer-Aided Engineering (CAD Control systems design Control theory Controllers Cutting force Engineering Feed direction Feedforward control Industrial and Production Engineering Mechanical Engineering Media Management Milling (machining) Original Article Proportional integral Robot control Robots |
title | Integration of optimized feedrate into an online adaptive force controller for robot milling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20optimized%20feedrate%20into%20an%20online%20adaptive%20force%20controller%20for%20robot%20milling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Xiong,%20Gang&rft.date=2020-01-01&rft.volume=106&rft.issue=3-4&rft.spage=1533&rft.epage=1542&rft.pages=1533-1542&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04691-1&rft_dat=%3Cproquest_cross%3E2344184765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344184765&rft_id=info:pmid/&rfr_iscdi=true |