Integration of optimized feedrate into an online adaptive force controller for robot milling

Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-01, Vol.106 (3-4), p.1533-1542
Hauptverfasser: Xiong, Gang, Li, Zhou-Long, Ding, Ye, Zhu, LiMin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1542
container_issue 3-4
container_start_page 1533
container_title International journal of advanced manufacturing technology
container_volume 106
creator Xiong, Gang
Li, Zhou-Long
Ding, Ye
Zhu, LiMin
description Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.
doi_str_mv 10.1007/s00170-019-04691-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344184765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344184765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczSTZJPdoxT_FApeehRCNjtbtmyTmk0F_fRGK3jzNPDm994Mj5Br4LfAubmbOAfDGYeGcaUbYHBCZqCkZJJDdUpmXOiaSaPrc3IxTduCa9D1jLwuQ8ZNcnmIgcaexn0edsMndrRH7IqOdAg5Ule2YRwCUte5wrwj7WPySH0MOcVxxPQt0BTbmOluGAu7uSRnvRsnvPqdc7J-fFgvntnq5Wm5uF8xL6HJzJRvaqyw9ag0-EpA51qO3KnOYQXC1MIrVQluuMcWwDVGtLVujRON8EbOyc0xdp_i2wGnbLfxkEK5aIVUCmpldFUocaR8itOUsLf7NOxc-rDA7XeJ9liiLSXanxItFJM8mqYChw2mv-h_XF98VHVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344184765</pqid></control><display><type>article</type><title>Integration of optimized feedrate into an online adaptive force controller for robot milling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiong, Gang ; Li, Zhou-Long ; Ding, Ye ; Zhu, LiMin</creator><creatorcontrib>Xiong, Gang ; Li, Zhou-Long ; Ding, Ye ; Zhu, LiMin</creatorcontrib><description>Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04691-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive control ; CAE) and Design ; Computer-Aided Engineering (CAD ; Control systems design ; Control theory ; Controllers ; Cutting force ; Engineering ; Feed direction ; Feedforward control ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Proportional integral ; Robot control ; Robots</subject><ispartof>International journal of advanced manufacturing technology, 2020-01, Vol.106 (3-4), p.1533-1542</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</citedby><cites>FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04691-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04691-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xiong, Gang</creatorcontrib><creatorcontrib>Li, Zhou-Long</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><creatorcontrib>Zhu, LiMin</creatorcontrib><title>Integration of optimized feedrate into an online adaptive force controller for robot milling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.</description><subject>Adaptive control</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Cutting force</subject><subject>Engineering</subject><subject>Feed direction</subject><subject>Feedforward control</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Proportional integral</subject><subject>Robot control</subject><subject>Robots</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczSTZJPdoxT_FApeehRCNjtbtmyTmk0F_fRGK3jzNPDm994Mj5Br4LfAubmbOAfDGYeGcaUbYHBCZqCkZJJDdUpmXOiaSaPrc3IxTduCa9D1jLwuQ8ZNcnmIgcaexn0edsMndrRH7IqOdAg5Ule2YRwCUte5wrwj7WPySH0MOcVxxPQt0BTbmOluGAu7uSRnvRsnvPqdc7J-fFgvntnq5Wm5uF8xL6HJzJRvaqyw9ag0-EpA51qO3KnOYQXC1MIrVQluuMcWwDVGtLVujRON8EbOyc0xdp_i2wGnbLfxkEK5aIVUCmpldFUocaR8itOUsLf7NOxc-rDA7XeJ9liiLSXanxItFJM8mqYChw2mv-h_XF98VHVX</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Xiong, Gang</creator><creator>Li, Zhou-Long</creator><creator>Ding, Ye</creator><creator>Zhu, LiMin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200101</creationdate><title>Integration of optimized feedrate into an online adaptive force controller for robot milling</title><author>Xiong, Gang ; Li, Zhou-Long ; Ding, Ye ; Zhu, LiMin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-70018e5ebce461c521dab0e0a4dae512782c4452070ceb11a972b86b7a292c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Cutting force</topic><topic>Engineering</topic><topic>Feed direction</topic><topic>Feedforward control</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Proportional integral</topic><topic>Robot control</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Gang</creatorcontrib><creatorcontrib>Li, Zhou-Long</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><creatorcontrib>Zhu, LiMin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Gang</au><au>Li, Zhou-Long</au><au>Ding, Ye</au><au>Zhu, LiMin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of optimized feedrate into an online adaptive force controller for robot milling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>106</volume><issue>3-4</issue><spage>1533</spage><epage>1542</epage><pages>1533-1542</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Maximum resultant cutting force control provides a great benefit of improving productivity in machining tasks. This paper presents a new force control method for robot milling that can prevent force overshoots during abrupt part geometry changes. Firstly, the feedrates of the robot at critical cutter locations are optimized offline according to the cutting force model and the part geometry. Secondly, an online parameter self-adaptive proportional-integral (PI) controller is designed in consideration of the robot feed-direction dynamics and the time-varying first-order model of the cutting process. Finally, the offline scheduled feedrates are integrated into the online adaptive controller via a feedforward-like strategy. Experiments demonstrate the effectiveness and advantages of the proposed force control method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04691-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-01, Vol.106 (3-4), p.1533-1542
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2344184765
source SpringerLink Journals - AutoHoldings
subjects Adaptive control
CAE) and Design
Computer-Aided Engineering (CAD
Control systems design
Control theory
Controllers
Cutting force
Engineering
Feed direction
Feedforward control
Industrial and Production Engineering
Mechanical Engineering
Media Management
Milling (machining)
Original Article
Proportional integral
Robot control
Robots
title Integration of optimized feedrate into an online adaptive force controller for robot milling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20optimized%20feedrate%20into%20an%20online%20adaptive%20force%20controller%20for%20robot%20milling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Xiong,%20Gang&rft.date=2020-01-01&rft.volume=106&rft.issue=3-4&rft.spage=1533&rft.epage=1542&rft.pages=1533-1542&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04691-1&rft_dat=%3Cproquest_cross%3E2344184765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344184765&rft_id=info:pmid/&rfr_iscdi=true