Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks
The cognitive radio network (CR) is a primary and promising technology to distribute the spectrum assignment to an unlicensed user (secondary users) which is not utilized by the licensed user (primary user).The cognitive radio network frames a reactive security policy to enhance the energy monitorin...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020, Vol.32 (1), p.151-161 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Vimal, S. Kalaivani, L. Kaliappan, M. Suresh, A. Gao, Xiao-Zhi Varatharajan, R. |
description | The cognitive radio network (CR) is a primary and promising technology to distribute the spectrum assignment to an unlicensed user (secondary users) which is not utilized by the licensed user (primary user).The cognitive radio network frames a reactive security policy to enhance the energy monitoring while using the CR network primary channels. The CR network has a good amount of energy capacity using battery resource and accesses the data communication via the time-slotted channel. The data communication with moderate energy-level utilization during transmission is a great challenge in CR network security monitoring, since intruders may often attack the network in reducing the energy level of the PU or SU. The framework used to secure the communication is using the discrete-time partially observed Markov decision process. This system proposes a modern data communication-secured scheme using private key encryption with the sensing results, and eclat algorithm has been proposed for energy detection and Byzantine attack prediction. The data communication is secured using the AES algorithm at the CR network, and the simulation provides the best effort-efficient energy usage and security. |
doi_str_mv | 10.1007/s00521-018-3788-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344171242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344171242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f6f4a9be56e926f26de558f5e3c2a4c12a982bfb6e4a8d2deff0efddf2b7f03c3</originalsourceid><addsrcrecordid>eNp1kc1uFDEQhC1EJJYkD5CbJc4D_pvZ2SMKEJCCuMDZ6rHbi5MZe2h7F4UX4jXxapE4cemWur-qOhRjN1K8lkJs3xQheiU7IcdOb8c2nrGNNFp3WvTjc7YRO9O-g9Ev2MtSHoQQZhj7Dfv9Do8453XBVHkOvKA7EHruoQKvBKkssZSYEz-UmPZ8Afc9JuQzAqV26CYoJzwWR1ixq3FBvgLVCPP8xPNUkI4N-Az0mI98yR5nDslzTEj7BqxNEX9BPUXExF3ep1jjETmBj5knrD8zPZYrdhFgLnj9d1-ybx_ef7392N1_uft0-_a-c1oOtQtDMLCbsB9wp4agBo99P4YetVNgnFSwG9UUpgENjF55DEFg8D6oaRuEdvqSvTr7rpR_HLBU-5APlFqkVdoYuZXKqEbJM-Uol0IY7EpxAXqyUthTH_bch2192FMfVjeNOmtKY9Me6Z_z_0V_AGEclCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344171242</pqid></control><display><type>article</type><title>Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks</title><source>SpringerNature Journals</source><creator>Vimal, S. ; Kalaivani, L. ; Kaliappan, M. ; Suresh, A. ; Gao, Xiao-Zhi ; Varatharajan, R.</creator><creatorcontrib>Vimal, S. ; Kalaivani, L. ; Kaliappan, M. ; Suresh, A. ; Gao, Xiao-Zhi ; Varatharajan, R.</creatorcontrib><description>The cognitive radio network (CR) is a primary and promising technology to distribute the spectrum assignment to an unlicensed user (secondary users) which is not utilized by the licensed user (primary user).The cognitive radio network frames a reactive security policy to enhance the energy monitoring while using the CR network primary channels. The CR network has a good amount of energy capacity using battery resource and accesses the data communication via the time-slotted channel. The data communication with moderate energy-level utilization during transmission is a great challenge in CR network security monitoring, since intruders may often attack the network in reducing the energy level of the PU or SU. The framework used to secure the communication is using the discrete-time partially observed Markov decision process. This system proposes a modern data communication-secured scheme using private key encryption with the sensing results, and eclat algorithm has been proposed for energy detection and Byzantine attack prediction. The data communication is secured using the AES algorithm at the CR network, and the simulation provides the best effort-efficient energy usage and security.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3788-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Brain- Inspired computing and Machine learning for Brain Health ; Cognitive radio ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer simulation ; Data communications ; Data Mining and Knowledge Discovery ; Data transmission ; Encryption ; Energy ; Energy consumption ; Energy levels ; Image Processing and Computer Vision ; Machine learning ; Markov chains ; Markov processes ; Monitoring ; Network security ; Optimization ; Probability and Statistics in Computer Science ; Radio networks ; Security</subject><ispartof>Neural computing & applications, 2020, Vol.32 (1), p.151-161</ispartof><rights>The Natural Computing Applications Forum 2018</rights><rights>Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f6f4a9be56e926f26de558f5e3c2a4c12a982bfb6e4a8d2deff0efddf2b7f03c3</citedby><cites>FETCH-LOGICAL-c316t-f6f4a9be56e926f26de558f5e3c2a4c12a982bfb6e4a8d2deff0efddf2b7f03c3</cites><orcidid>0000-0002-1467-1206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3788-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3788-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vimal, S.</creatorcontrib><creatorcontrib>Kalaivani, L.</creatorcontrib><creatorcontrib>Kaliappan, M.</creatorcontrib><creatorcontrib>Suresh, A.</creatorcontrib><creatorcontrib>Gao, Xiao-Zhi</creatorcontrib><creatorcontrib>Varatharajan, R.</creatorcontrib><title>Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The cognitive radio network (CR) is a primary and promising technology to distribute the spectrum assignment to an unlicensed user (secondary users) which is not utilized by the licensed user (primary user).The cognitive radio network frames a reactive security policy to enhance the energy monitoring while using the CR network primary channels. The CR network has a good amount of energy capacity using battery resource and accesses the data communication via the time-slotted channel. The data communication with moderate energy-level utilization during transmission is a great challenge in CR network security monitoring, since intruders may often attack the network in reducing the energy level of the PU or SU. The framework used to secure the communication is using the discrete-time partially observed Markov decision process. This system proposes a modern data communication-secured scheme using private key encryption with the sensing results, and eclat algorithm has been proposed for energy detection and Byzantine attack prediction. The data communication is secured using the AES algorithm at the CR network, and the simulation provides the best effort-efficient energy usage and security.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain- Inspired computing and Machine learning for Brain Health</subject><subject>Cognitive radio</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Data communications</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data transmission</subject><subject>Encryption</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy levels</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Monitoring</subject><subject>Network security</subject><subject>Optimization</subject><subject>Probability and Statistics in Computer Science</subject><subject>Radio networks</subject><subject>Security</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1uFDEQhC1EJJYkD5CbJc4D_pvZ2SMKEJCCuMDZ6rHbi5MZe2h7F4UX4jXxapE4cemWur-qOhRjN1K8lkJs3xQheiU7IcdOb8c2nrGNNFp3WvTjc7YRO9O-g9Ev2MtSHoQQZhj7Dfv9Do8453XBVHkOvKA7EHruoQKvBKkssZSYEz-UmPZ8Afc9JuQzAqV26CYoJzwWR1ixq3FBvgLVCPP8xPNUkI4N-Az0mI98yR5nDslzTEj7BqxNEX9BPUXExF3ep1jjETmBj5knrD8zPZYrdhFgLnj9d1-ybx_ef7392N1_uft0-_a-c1oOtQtDMLCbsB9wp4agBo99P4YetVNgnFSwG9UUpgENjF55DEFg8D6oaRuEdvqSvTr7rpR_HLBU-5APlFqkVdoYuZXKqEbJM-Uol0IY7EpxAXqyUthTH_bch2192FMfVjeNOmtKY9Me6Z_z_0V_AGEclCs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vimal, S.</creator><creator>Kalaivani, L.</creator><creator>Kaliappan, M.</creator><creator>Suresh, A.</creator><creator>Gao, Xiao-Zhi</creator><creator>Varatharajan, R.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1467-1206</orcidid></search><sort><creationdate>2020</creationdate><title>Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks</title><author>Vimal, S. ; Kalaivani, L. ; Kaliappan, M. ; Suresh, A. ; Gao, Xiao-Zhi ; Varatharajan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f6f4a9be56e926f26de558f5e3c2a4c12a982bfb6e4a8d2deff0efddf2b7f03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain- Inspired computing and Machine learning for Brain Health</topic><topic>Cognitive radio</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Data communications</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data transmission</topic><topic>Encryption</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy levels</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Monitoring</topic><topic>Network security</topic><topic>Optimization</topic><topic>Probability and Statistics in Computer Science</topic><topic>Radio networks</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vimal, S.</creatorcontrib><creatorcontrib>Kalaivani, L.</creatorcontrib><creatorcontrib>Kaliappan, M.</creatorcontrib><creatorcontrib>Suresh, A.</creatorcontrib><creatorcontrib>Gao, Xiao-Zhi</creatorcontrib><creatorcontrib>Varatharajan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vimal, S.</au><au>Kalaivani, L.</au><au>Kaliappan, M.</au><au>Suresh, A.</au><au>Gao, Xiao-Zhi</au><au>Varatharajan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020</date><risdate>2020</risdate><volume>32</volume><issue>1</issue><spage>151</spage><epage>161</epage><pages>151-161</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The cognitive radio network (CR) is a primary and promising technology to distribute the spectrum assignment to an unlicensed user (secondary users) which is not utilized by the licensed user (primary user).The cognitive radio network frames a reactive security policy to enhance the energy monitoring while using the CR network primary channels. The CR network has a good amount of energy capacity using battery resource and accesses the data communication via the time-slotted channel. The data communication with moderate energy-level utilization during transmission is a great challenge in CR network security monitoring, since intruders may often attack the network in reducing the energy level of the PU or SU. The framework used to secure the communication is using the discrete-time partially observed Markov decision process. This system proposes a modern data communication-secured scheme using private key encryption with the sensing results, and eclat algorithm has been proposed for energy detection and Byzantine attack prediction. The data communication is secured using the AES algorithm at the CR network, and the simulation provides the best effort-efficient energy usage and security.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3788-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1467-1206</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020, Vol.32 (1), p.151-161 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2344171242 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Brain- Inspired computing and Machine learning for Brain Health Cognitive radio Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Data communications Data Mining and Knowledge Discovery Data transmission Encryption Energy Energy consumption Energy levels Image Processing and Computer Vision Machine learning Markov chains Markov processes Monitoring Network security Optimization Probability and Statistics in Computer Science Radio networks Security |
title | Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20secured%20data%20transmission%20using%20machine%20learning-based%20discrete-time%20partially%20observed%20Markov%20model%20and%20energy%20optimization%20in%20cognitive%20radio%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Vimal,%20S.&rft.date=2020&rft.volume=32&rft.issue=1&rft.spage=151&rft.epage=161&rft.pages=151-161&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3788-3&rft_dat=%3Cproquest_cross%3E2344171242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344171242&rft_id=info:pmid/&rfr_iscdi=true |