Observation of quantum depletion in a non-equilibrium exciton–polariton condensate
Superfluidity, first discovered in liquid 4 He, is closely related to Bose–Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations—the phenomenon of q...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-01, Vol.11 (1), p.429-429, Article 429 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 429 |
---|---|
container_issue | 1 |
container_start_page | 429 |
container_title | Nature communications |
container_volume | 11 |
creator | Pieczarka, Maciej Estrecho, Eliezer Boozarjmehr, Maryam Bleu, Olivier Steger, Mark West, Kenneth Pfeiffer, Loren N. Snoke, David W. Levinsen, Jesper Parish, Meera M. Truscott, Andrew G. Ostrovskaya, Elena A. |
description | Superfluidity, first discovered in liquid
4
He, is closely related to Bose–Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations—the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton–polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton–polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton–polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton–polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.
Many aspects of polariton condensate behaviour can be captured by mean-field theories but interactions introduce additional quantum effects. Here the authors observe quantum depletion in a driven-dissipative condensate and find that deviations from equilibrium predictions depend on the excitonic fraction. |
doi_str_mv | 10.1038/s41467-019-14243-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2343481107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e80385c36af94ee6bf3d6d048eb9c40b</doaj_id><sourcerecordid>2344227710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-72aa6fd160e668b9dd204ce66e6211a5448f5bb77b9429fd43e5252a8158be513</originalsourceid><addsrcrecordid>eNqNks1u1DAQxyMEotXSF-CAInFBQgF_x74goRUflSr1Us6W7UwWr7L2rp0UuPEOfcM-Cd5NWVoOCF88Gv_mr5nxv6qeY_QGIyrfZoaZaBuEVYMZYbQRj6pTghhucEvo43vxSXWW8xqVQxWWjD2tTihWQnHBT6urS5shXZvRx1DHvt5NJozTpu5gO8Ah6UNt6hBDA7vJD94mX57hu_NjDLc_b7ZxMGkf1y6GDkI2IzyrnvRmyHB2dy-qLx8_XC0_NxeXn86X7y8axxkam5YYI_oOCwRCSKu6rvTsSgyCYGw4Y7Ln1ratVYyovmMUOOHESMylBY7pojqfdbto1nqb_MakHzoarw-JmFbapNG7ATTIsjTuqDC9YgDC9rQTHWISrHIM2aL1btbaTnYDnYMwJjM8EH34EvxXvYrXWqhWcEWKwKs7gRR3E-RRb3x2MAwmQJyyJpQxQtq2_N6ievkXuo5TCmVVe4oyiTFqC0VmyqWYc4L-2AxGeu8BPXtAFw_ogwe0KEUv7o9xLPn94wV4PQPfwMY-Ow_BwRErJuG4iLK9XZAstPx_eunHg4-WcQpjKaVzaS54WEH6M-Q_-v8F3t7fAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343481107</pqid></control><display><type>article</type><title>Observation of quantum depletion in a non-equilibrium exciton–polariton condensate</title><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Pieczarka, Maciej ; Estrecho, Eliezer ; Boozarjmehr, Maryam ; Bleu, Olivier ; Steger, Mark ; West, Kenneth ; Pfeiffer, Loren N. ; Snoke, David W. ; Levinsen, Jesper ; Parish, Meera M. ; Truscott, Andrew G. ; Ostrovskaya, Elena A.</creator><creatorcontrib>Pieczarka, Maciej ; Estrecho, Eliezer ; Boozarjmehr, Maryam ; Bleu, Olivier ; Steger, Mark ; West, Kenneth ; Pfeiffer, Loren N. ; Snoke, David W. ; Levinsen, Jesper ; Parish, Meera M. ; Truscott, Andrew G. ; Ostrovskaya, Elena A.</creatorcontrib><description>Superfluidity, first discovered in liquid
4
He, is closely related to Bose–Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations—the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton–polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton–polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton–polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton–polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.
Many aspects of polariton condensate behaviour can be captured by mean-field theories but interactions introduce additional quantum effects. Here the authors observe quantum depletion in a driven-dissipative condensate and find that deviations from equilibrium predictions depend on the excitonic fraction.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-14243-6</identifier><identifier>PMID: 31969565</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119/2791 ; 639/766/119/999 ; Bogoliubov theory ; Condensates ; Depletion ; Elementary excitations ; Equilibrium ; Excitation ; Excitons ; Humanities and Social Sciences ; multidisciplinary ; Multidisciplinary Sciences ; Polaritons ; Predictions ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Superfluidity ; Variation</subject><ispartof>Nature communications, 2020-01, Vol.11 (1), p.429-429, Article 429</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>47</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000511464000008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-72aa6fd160e668b9dd204ce66e6211a5448f5bb77b9429fd43e5252a8158be513</citedby><cites>FETCH-LOGICAL-c540t-72aa6fd160e668b9dd204ce66e6211a5448f5bb77b9429fd43e5252a8158be513</cites><orcidid>0000-0002-2010-3512 ; 0000-0001-8705-0171 ; 0000-0002-2207-118X ; 0000-0001-5796-2268 ; 0000-0002-5907-2493 ; 0000-0002-8657-6048 ; 0000-0003-0523-6533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976592/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976592/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31969565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pieczarka, Maciej</creatorcontrib><creatorcontrib>Estrecho, Eliezer</creatorcontrib><creatorcontrib>Boozarjmehr, Maryam</creatorcontrib><creatorcontrib>Bleu, Olivier</creatorcontrib><creatorcontrib>Steger, Mark</creatorcontrib><creatorcontrib>West, Kenneth</creatorcontrib><creatorcontrib>Pfeiffer, Loren N.</creatorcontrib><creatorcontrib>Snoke, David W.</creatorcontrib><creatorcontrib>Levinsen, Jesper</creatorcontrib><creatorcontrib>Parish, Meera M.</creatorcontrib><creatorcontrib>Truscott, Andrew G.</creatorcontrib><creatorcontrib>Ostrovskaya, Elena A.</creatorcontrib><title>Observation of quantum depletion in a non-equilibrium exciton–polariton condensate</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Superfluidity, first discovered in liquid
4
He, is closely related to Bose–Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations—the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton–polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton–polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton–polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton–polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.
Many aspects of polariton condensate behaviour can be captured by mean-field theories but interactions introduce additional quantum effects. Here the authors observe quantum depletion in a driven-dissipative condensate and find that deviations from equilibrium predictions depend on the excitonic fraction.</description><subject>140/125</subject><subject>639/766/119/2791</subject><subject>639/766/119/999</subject><subject>Bogoliubov theory</subject><subject>Condensates</subject><subject>Depletion</subject><subject>Elementary excitations</subject><subject>Equilibrium</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Polaritons</subject><subject>Predictions</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Superfluidity</subject><subject>Variation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAQxyMEotXSF-CAInFBQgF_x74goRUflSr1Us6W7UwWr7L2rp0UuPEOfcM-Cd5NWVoOCF88Gv_mr5nxv6qeY_QGIyrfZoaZaBuEVYMZYbQRj6pTghhucEvo43vxSXWW8xqVQxWWjD2tTihWQnHBT6urS5shXZvRx1DHvt5NJozTpu5gO8Ah6UNt6hBDA7vJD94mX57hu_NjDLc_b7ZxMGkf1y6GDkI2IzyrnvRmyHB2dy-qLx8_XC0_NxeXn86X7y8axxkam5YYI_oOCwRCSKu6rvTsSgyCYGw4Y7Ln1ratVYyovmMUOOHESMylBY7pojqfdbto1nqb_MakHzoarw-JmFbapNG7ATTIsjTuqDC9YgDC9rQTHWISrHIM2aL1btbaTnYDnYMwJjM8EH34EvxXvYrXWqhWcEWKwKs7gRR3E-RRb3x2MAwmQJyyJpQxQtq2_N6ievkXuo5TCmVVe4oyiTFqC0VmyqWYc4L-2AxGeu8BPXtAFw_ogwe0KEUv7o9xLPn94wV4PQPfwMY-Ow_BwRErJuG4iLK9XZAstPx_eunHg4-WcQpjKaVzaS54WEH6M-Q_-v8F3t7fAA</recordid><startdate>20200122</startdate><enddate>20200122</enddate><creator>Pieczarka, Maciej</creator><creator>Estrecho, Eliezer</creator><creator>Boozarjmehr, Maryam</creator><creator>Bleu, Olivier</creator><creator>Steger, Mark</creator><creator>West, Kenneth</creator><creator>Pfeiffer, Loren N.</creator><creator>Snoke, David W.</creator><creator>Levinsen, Jesper</creator><creator>Parish, Meera M.</creator><creator>Truscott, Andrew G.</creator><creator>Ostrovskaya, Elena A.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2010-3512</orcidid><orcidid>https://orcid.org/0000-0001-8705-0171</orcidid><orcidid>https://orcid.org/0000-0002-2207-118X</orcidid><orcidid>https://orcid.org/0000-0001-5796-2268</orcidid><orcidid>https://orcid.org/0000-0002-5907-2493</orcidid><orcidid>https://orcid.org/0000-0002-8657-6048</orcidid><orcidid>https://orcid.org/0000-0003-0523-6533</orcidid></search><sort><creationdate>20200122</creationdate><title>Observation of quantum depletion in a non-equilibrium exciton–polariton condensate</title><author>Pieczarka, Maciej ; Estrecho, Eliezer ; Boozarjmehr, Maryam ; Bleu, Olivier ; Steger, Mark ; West, Kenneth ; Pfeiffer, Loren N. ; Snoke, David W. ; Levinsen, Jesper ; Parish, Meera M. ; Truscott, Andrew G. ; Ostrovskaya, Elena A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-72aa6fd160e668b9dd204ce66e6211a5448f5bb77b9429fd43e5252a8158be513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/125</topic><topic>639/766/119/2791</topic><topic>639/766/119/999</topic><topic>Bogoliubov theory</topic><topic>Condensates</topic><topic>Depletion</topic><topic>Elementary excitations</topic><topic>Equilibrium</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Polaritons</topic><topic>Predictions</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Superfluidity</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieczarka, Maciej</creatorcontrib><creatorcontrib>Estrecho, Eliezer</creatorcontrib><creatorcontrib>Boozarjmehr, Maryam</creatorcontrib><creatorcontrib>Bleu, Olivier</creatorcontrib><creatorcontrib>Steger, Mark</creatorcontrib><creatorcontrib>West, Kenneth</creatorcontrib><creatorcontrib>Pfeiffer, Loren N.</creatorcontrib><creatorcontrib>Snoke, David W.</creatorcontrib><creatorcontrib>Levinsen, Jesper</creatorcontrib><creatorcontrib>Parish, Meera M.</creatorcontrib><creatorcontrib>Truscott, Andrew G.</creatorcontrib><creatorcontrib>Ostrovskaya, Elena A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieczarka, Maciej</au><au>Estrecho, Eliezer</au><au>Boozarjmehr, Maryam</au><au>Bleu, Olivier</au><au>Steger, Mark</au><au>West, Kenneth</au><au>Pfeiffer, Loren N.</au><au>Snoke, David W.</au><au>Levinsen, Jesper</au><au>Parish, Meera M.</au><au>Truscott, Andrew G.</au><au>Ostrovskaya, Elena A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of quantum depletion in a non-equilibrium exciton–polariton condensate</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-01-22</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>429</spage><epage>429</epage><pages>429-429</pages><artnum>429</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Superfluidity, first discovered in liquid
4
He, is closely related to Bose–Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations—the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton–polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton–polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton–polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton–polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.
Many aspects of polariton condensate behaviour can be captured by mean-field theories but interactions introduce additional quantum effects. Here the authors observe quantum depletion in a driven-dissipative condensate and find that deviations from equilibrium predictions depend on the excitonic fraction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31969565</pmid><doi>10.1038/s41467-019-14243-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2010-3512</orcidid><orcidid>https://orcid.org/0000-0001-8705-0171</orcidid><orcidid>https://orcid.org/0000-0002-2207-118X</orcidid><orcidid>https://orcid.org/0000-0001-5796-2268</orcidid><orcidid>https://orcid.org/0000-0002-5907-2493</orcidid><orcidid>https://orcid.org/0000-0002-8657-6048</orcidid><orcidid>https://orcid.org/0000-0003-0523-6533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-01, Vol.11 (1), p.429-429, Article 429 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_2343481107 |
source | DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 140/125 639/766/119/2791 639/766/119/999 Bogoliubov theory Condensates Depletion Elementary excitations Equilibrium Excitation Excitons Humanities and Social Sciences multidisciplinary Multidisciplinary Sciences Polaritons Predictions Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Superfluidity Variation |
title | Observation of quantum depletion in a non-equilibrium exciton–polariton condensate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20quantum%20depletion%20in%20a%20non-equilibrium%20exciton%E2%80%93polariton%20condensate&rft.jtitle=Nature%20communications&rft.au=Pieczarka,%20Maciej&rft.date=2020-01-22&rft.volume=11&rft.issue=1&rft.spage=429&rft.epage=429&rft.pages=429-429&rft.artnum=429&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-14243-6&rft_dat=%3Cproquest_webof%3E2344227710%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343481107&rft_id=info:pmid/31969565&rft_doaj_id=oai_doaj_org_article_e80385c36af94ee6bf3d6d048eb9c40b&rfr_iscdi=true |