A hybrid approach for the optimization of quality of service metrics of WSN

The core objective behind this research paper is to implement a hybrid optimization technique along with proactive routing algorithm to enhance the network lifetime of wireless sensor networks (WSN). The combination of two soft computing techniques viz. genetic algorithm (GA) and bacteria foraging o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2020, Vol.26 (1), p.621-638
Hauptverfasser: Rani, Shalli, Balasaraswathi, M., Reddy, P. Chandra Sekhar, Brar, Gurbinder Singh, Sivaram, M., Dhasarathan, Vigneswaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 638
container_issue 1
container_start_page 621
container_title Wireless networks
container_volume 26
creator Rani, Shalli
Balasaraswathi, M.
Reddy, P. Chandra Sekhar
Brar, Gurbinder Singh
Sivaram, M.
Dhasarathan, Vigneswaran
description The core objective behind this research paper is to implement a hybrid optimization technique along with proactive routing algorithm to enhance the network lifetime of wireless sensor networks (WSN). The combination of two soft computing techniques viz. genetic algorithm (GA) and bacteria foraging optimization (BFO) techniques are applied individually on destination sequence distance vector (DSDV) routing protocol and after that the hybridization of GA and BFO is applied on the same routing protocol. The various simulation parameters used in the research are: throughput, end to end delay, congestion, packet delivery ratio, bit error rate and routing overhead. The bits are processed at a data rate of 512 bytes/s. The packet size for data transmission is 100 bytes. The data transmission time taken by the packets is 200 s i.e. the simulation time for each simulation scenario. Network is composed of 60 nodes. Simulation results clearly demonstrates that the hybrid approach along with DSDV outperforms over ordinary DSDV routing protocol and it is best suitable under smaller size of WSN.
doi_str_mv 10.1007/s11276-019-02170-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343397677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343397677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fc00582695a3ea87cc0efa96c446e0b4d64130ccb5bbb4264fb9489baf57d0e23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMclkWYovLLpQcRmSNLEpbWdMpkL99U4dwZ2re7icc-7lQ-icwiUFUFeFUqYkAaoJMKqA6AM0opVipKZaHvYaGCMAvD5GJ6UsAaDmWo_QwwQvdi6nObZtmxvrFzg2GXeLgJu2S-v0ZbvUbHAT8cfWrlK328sS8mfyAa9Dl5Mv-9Xb8-MpOop2VcLZ7xyj15vrl-kdmT3d3k8nM-I51R2JHqCqmdSV5cHWynsI0WrphZABnJhLQTl47yrnnGBSRKdFrZ2NlZpDYHyMLobe_uGPbSidWTbbvOlPGsYF51pJpXoXG1w-N6XkEE2b09rmnaFg9tDMAM300MwPNKP7EB9CpTdv3kP-q_4n9Q1MYW8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343397677</pqid></control><display><type>article</type><title>A hybrid approach for the optimization of quality of service metrics of WSN</title><source>Springer Nature - Complete Springer Journals</source><creator>Rani, Shalli ; Balasaraswathi, M. ; Reddy, P. Chandra Sekhar ; Brar, Gurbinder Singh ; Sivaram, M. ; Dhasarathan, Vigneswaran</creator><creatorcontrib>Rani, Shalli ; Balasaraswathi, M. ; Reddy, P. Chandra Sekhar ; Brar, Gurbinder Singh ; Sivaram, M. ; Dhasarathan, Vigneswaran</creatorcontrib><description>The core objective behind this research paper is to implement a hybrid optimization technique along with proactive routing algorithm to enhance the network lifetime of wireless sensor networks (WSN). The combination of two soft computing techniques viz. genetic algorithm (GA) and bacteria foraging optimization (BFO) techniques are applied individually on destination sequence distance vector (DSDV) routing protocol and after that the hybridization of GA and BFO is applied on the same routing protocol. The various simulation parameters used in the research are: throughput, end to end delay, congestion, packet delivery ratio, bit error rate and routing overhead. The bits are processed at a data rate of 512 bytes/s. The packet size for data transmission is 100 bytes. The data transmission time taken by the packets is 200 s i.e. the simulation time for each simulation scenario. Network is composed of 60 nodes. Simulation results clearly demonstrates that the hybrid approach along with DSDV outperforms over ordinary DSDV routing protocol and it is best suitable under smaller size of WSN.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-019-02170-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bit error rate ; Communications Engineering ; Computer Communication Networks ; Computer simulation ; Data transmission ; Electrical Engineering ; Engineering ; Genetic algorithms ; IT in Business ; Networks ; Optimization ; Optimization techniques ; Quality of service ; Remote sensors ; Scientific papers ; Simulation ; Soft computing ; Wireless networks</subject><ispartof>Wireless networks, 2020, Vol.26 (1), p.621-638</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Wireless Networks is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fc00582695a3ea87cc0efa96c446e0b4d64130ccb5bbb4264fb9489baf57d0e23</citedby><cites>FETCH-LOGICAL-c319t-fc00582695a3ea87cc0efa96c446e0b4d64130ccb5bbb4264fb9489baf57d0e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11276-019-02170-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11276-019-02170-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27902,27903,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Rani, Shalli</creatorcontrib><creatorcontrib>Balasaraswathi, M.</creatorcontrib><creatorcontrib>Reddy, P. Chandra Sekhar</creatorcontrib><creatorcontrib>Brar, Gurbinder Singh</creatorcontrib><creatorcontrib>Sivaram, M.</creatorcontrib><creatorcontrib>Dhasarathan, Vigneswaran</creatorcontrib><title>A hybrid approach for the optimization of quality of service metrics of WSN</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>The core objective behind this research paper is to implement a hybrid optimization technique along with proactive routing algorithm to enhance the network lifetime of wireless sensor networks (WSN). The combination of two soft computing techniques viz. genetic algorithm (GA) and bacteria foraging optimization (BFO) techniques are applied individually on destination sequence distance vector (DSDV) routing protocol and after that the hybridization of GA and BFO is applied on the same routing protocol. The various simulation parameters used in the research are: throughput, end to end delay, congestion, packet delivery ratio, bit error rate and routing overhead. The bits are processed at a data rate of 512 bytes/s. The packet size for data transmission is 100 bytes. The data transmission time taken by the packets is 200 s i.e. the simulation time for each simulation scenario. Network is composed of 60 nodes. Simulation results clearly demonstrates that the hybrid approach along with DSDV outperforms over ordinary DSDV routing protocol and it is best suitable under smaller size of WSN.</description><subject>Bit error rate</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Data transmission</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>IT in Business</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Quality of service</subject><subject>Remote sensors</subject><subject>Scientific papers</subject><subject>Simulation</subject><subject>Soft computing</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMclkWYovLLpQcRmSNLEpbWdMpkL99U4dwZ2re7icc-7lQ-icwiUFUFeFUqYkAaoJMKqA6AM0opVipKZaHvYaGCMAvD5GJ6UsAaDmWo_QwwQvdi6nObZtmxvrFzg2GXeLgJu2S-v0ZbvUbHAT8cfWrlK328sS8mfyAa9Dl5Mv-9Xb8-MpOop2VcLZ7xyj15vrl-kdmT3d3k8nM-I51R2JHqCqmdSV5cHWynsI0WrphZABnJhLQTl47yrnnGBSRKdFrZ2NlZpDYHyMLobe_uGPbSidWTbbvOlPGsYF51pJpXoXG1w-N6XkEE2b09rmnaFg9tDMAM300MwPNKP7EB9CpTdv3kP-q_4n9Q1MYW8o</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Rani, Shalli</creator><creator>Balasaraswathi, M.</creator><creator>Reddy, P. Chandra Sekhar</creator><creator>Brar, Gurbinder Singh</creator><creator>Sivaram, M.</creator><creator>Dhasarathan, Vigneswaran</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>A hybrid approach for the optimization of quality of service metrics of WSN</title><author>Rani, Shalli ; Balasaraswathi, M. ; Reddy, P. Chandra Sekhar ; Brar, Gurbinder Singh ; Sivaram, M. ; Dhasarathan, Vigneswaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fc00582695a3ea87cc0efa96c446e0b4d64130ccb5bbb4264fb9489baf57d0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bit error rate</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Data transmission</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>IT in Business</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Quality of service</topic><topic>Remote sensors</topic><topic>Scientific papers</topic><topic>Simulation</topic><topic>Soft computing</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Shalli</creatorcontrib><creatorcontrib>Balasaraswathi, M.</creatorcontrib><creatorcontrib>Reddy, P. Chandra Sekhar</creatorcontrib><creatorcontrib>Brar, Gurbinder Singh</creatorcontrib><creatorcontrib>Sivaram, M.</creatorcontrib><creatorcontrib>Dhasarathan, Vigneswaran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Shalli</au><au>Balasaraswathi, M.</au><au>Reddy, P. Chandra Sekhar</au><au>Brar, Gurbinder Singh</au><au>Sivaram, M.</au><au>Dhasarathan, Vigneswaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid approach for the optimization of quality of service metrics of WSN</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2020</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>621</spage><epage>638</epage><pages>621-638</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>The core objective behind this research paper is to implement a hybrid optimization technique along with proactive routing algorithm to enhance the network lifetime of wireless sensor networks (WSN). The combination of two soft computing techniques viz. genetic algorithm (GA) and bacteria foraging optimization (BFO) techniques are applied individually on destination sequence distance vector (DSDV) routing protocol and after that the hybridization of GA and BFO is applied on the same routing protocol. The various simulation parameters used in the research are: throughput, end to end delay, congestion, packet delivery ratio, bit error rate and routing overhead. The bits are processed at a data rate of 512 bytes/s. The packet size for data transmission is 100 bytes. The data transmission time taken by the packets is 200 s i.e. the simulation time for each simulation scenario. Network is composed of 60 nodes. Simulation results clearly demonstrates that the hybrid approach along with DSDV outperforms over ordinary DSDV routing protocol and it is best suitable under smaller size of WSN.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-019-02170-9</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-0038
ispartof Wireless networks, 2020, Vol.26 (1), p.621-638
issn 1022-0038
1572-8196
language eng
recordid cdi_proquest_journals_2343397677
source Springer Nature - Complete Springer Journals
subjects Bit error rate
Communications Engineering
Computer Communication Networks
Computer simulation
Data transmission
Electrical Engineering
Engineering
Genetic algorithms
IT in Business
Networks
Optimization
Optimization techniques
Quality of service
Remote sensors
Scientific papers
Simulation
Soft computing
Wireless networks
title A hybrid approach for the optimization of quality of service metrics of WSN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20approach%20for%20the%20optimization%20of%20quality%20of%20service%20metrics%20of%20WSN&rft.jtitle=Wireless%20networks&rft.au=Rani,%20Shalli&rft.date=2020&rft.volume=26&rft.issue=1&rft.spage=621&rft.epage=638&rft.pages=621-638&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-019-02170-9&rft_dat=%3Cproquest_cross%3E2343397677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343397677&rft_id=info:pmid/&rfr_iscdi=true