Stochastic Finite State Control of POMDPs with LTL Specifications

Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
Hauptverfasser: Ahmadi, Mohamadreza, Sharan, Rangoli, Burdick, Joel W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ahmadi, Mohamadreza
Sharan, Rangoli
Burdick, Joel W
description Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2343363952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343363952</sourcerecordid><originalsourceid>FETCH-proquest_journals_23433639523</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNBZsH1qdQxLOhgFepdlWXFFds33pN_PQx_QZeYwsxKBRDxEp0TKjQiJ-jiOZXaUaYqBuFTsdaeIrYbCOssGKlYLc-948gP4Fl7Px_VF8LHcQVmXUI1G29ZqxdY72ol1qwYy4c9bsS9udX6Pxsm_Z0Pc9H6e3JIaiQlihudU4n_XFxFlOJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343363952</pqid></control><display><type>article</type><title>Stochastic Finite State Control of POMDPs with LTL Specifications</title><source>Free E- Journals</source><creator>Ahmadi, Mohamadreza ; Sharan, Rangoli ; Burdick, Joel W</creator><creatorcontrib>Ahmadi, Mohamadreza ; Sharan, Rangoli ; Burdick, Joel W</creatorcontrib><description>Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous cars ; Decision making ; Iterative algorithms ; Iterative methods ; Markov analysis ; Markov processes ; Optimal control ; Optimization ; Poisson equation ; Robots ; Specifications ; Temporal logic</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Sharan, Rangoli</creatorcontrib><creatorcontrib>Burdick, Joel W</creatorcontrib><title>Stochastic Finite State Control of POMDPs with LTL Specifications</title><title>arXiv.org</title><description>Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.</description><subject>Autonomous cars</subject><subject>Decision making</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Poisson equation</subject><subject>Robots</subject><subject>Specifications</subject><subject>Temporal logic</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNBZsH1qdQxLOhgFepdlWXFFds33pN_PQx_QZeYwsxKBRDxEp0TKjQiJ-jiOZXaUaYqBuFTsdaeIrYbCOssGKlYLc-948gP4Fl7Px_VF8LHcQVmXUI1G29ZqxdY72ol1qwYy4c9bsS9udX6Pxsm_Z0Pc9H6e3JIaiQlihudU4n_XFxFlOJA</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Ahmadi, Mohamadreza</creator><creator>Sharan, Rangoli</creator><creator>Burdick, Joel W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200121</creationdate><title>Stochastic Finite State Control of POMDPs with LTL Specifications</title><author>Ahmadi, Mohamadreza ; Sharan, Rangoli ; Burdick, Joel W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23433639523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autonomous cars</topic><topic>Decision making</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Poisson equation</topic><topic>Robots</topic><topic>Specifications</topic><topic>Temporal logic</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Sharan, Rangoli</creatorcontrib><creatorcontrib>Burdick, Joel W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mohamadreza</au><au>Sharan, Rangoli</au><au>Burdick, Joel W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic Finite State Control of POMDPs with LTL Specifications</atitle><jtitle>arXiv.org</jtitle><date>2020-01-21</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2343363952
source Free E- Journals
subjects Autonomous cars
Decision making
Iterative algorithms
Iterative methods
Markov analysis
Markov processes
Optimal control
Optimization
Poisson equation
Robots
Specifications
Temporal logic
title Stochastic Finite State Control of POMDPs with LTL Specifications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20Finite%20State%20Control%20of%20POMDPs%20with%20LTL%20Specifications&rft.jtitle=arXiv.org&rft.au=Ahmadi,%20Mohamadreza&rft.date=2020-01-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2343363952%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343363952&rft_id=info:pmid/&rfr_iscdi=true