Stochastic Finite State Control of POMDPs with LTL Specifications
Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantita...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ahmadi, Mohamadreza Sharan, Rangoli Burdick, Joel W |
description | Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2343363952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343363952</sourcerecordid><originalsourceid>FETCH-proquest_journals_23433639523</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNBZsH1qdQxLOhgFepdlWXFFds33pN_PQx_QZeYwsxKBRDxEp0TKjQiJ-jiOZXaUaYqBuFTsdaeIrYbCOssGKlYLc-948gP4Fl7Px_VF8LHcQVmXUI1G29ZqxdY72ol1qwYy4c9bsS9udX6Pxsm_Z0Pc9H6e3JIaiQlihudU4n_XFxFlOJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343363952</pqid></control><display><type>article</type><title>Stochastic Finite State Control of POMDPs with LTL Specifications</title><source>Free E- Journals</source><creator>Ahmadi, Mohamadreza ; Sharan, Rangoli ; Burdick, Joel W</creator><creatorcontrib>Ahmadi, Mohamadreza ; Sharan, Rangoli ; Burdick, Joel W</creatorcontrib><description>Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous cars ; Decision making ; Iterative algorithms ; Iterative methods ; Markov analysis ; Markov processes ; Optimal control ; Optimization ; Poisson equation ; Robots ; Specifications ; Temporal logic</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Sharan, Rangoli</creatorcontrib><creatorcontrib>Burdick, Joel W</creatorcontrib><title>Stochastic Finite State Control of POMDPs with LTL Specifications</title><title>arXiv.org</title><description>Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.</description><subject>Autonomous cars</subject><subject>Decision making</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Poisson equation</subject><subject>Robots</subject><subject>Specifications</subject><subject>Temporal logic</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNBZsH1qdQxLOhgFepdlWXFFds33pN_PQx_QZeYwsxKBRDxEp0TKjQiJ-jiOZXaUaYqBuFTsdaeIrYbCOssGKlYLc-948gP4Fl7Px_VF8LHcQVmXUI1G29ZqxdY72ol1qwYy4c9bsS9udX6Pxsm_Z0Pc9H6e3JIaiQlihudU4n_XFxFlOJA</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Ahmadi, Mohamadreza</creator><creator>Sharan, Rangoli</creator><creator>Burdick, Joel W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200121</creationdate><title>Stochastic Finite State Control of POMDPs with LTL Specifications</title><author>Ahmadi, Mohamadreza ; Sharan, Rangoli ; Burdick, Joel W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23433639523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autonomous cars</topic><topic>Decision making</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Poisson equation</topic><topic>Robots</topic><topic>Specifications</topic><topic>Temporal logic</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Sharan, Rangoli</creatorcontrib><creatorcontrib>Burdick, Joel W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mohamadreza</au><au>Sharan, Rangoli</au><au>Burdick, Joel W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic Finite State Control of POMDPs with LTL Specifications</atitle><jtitle>arXiv.org</jtitle><date>2020-01-21</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Partially observable Markov decision processes (POMDPs) provide a modeling framework for autonomous decision making under uncertainty and imperfect sensing, e.g. robot manipulation and self-driving cars. However, optimal control of POMDPs is notoriously intractable. This paper considers the quantitative problem of synthesizing sub-optimal stochastic finite state controllers (sFSCs) for POMDPs such that the probability of satisfying a set of high-level specifications in terms of linear temporal logic (LTL) formulae is maximized. We begin by casting the latter problem into an optimization and use relaxations based on the Poisson equation and McCormick envelopes. Then, we propose an stochastic bounded policy iteration algorithm, leading to a controlled growth in sFSC size and an any time algorithm, where the performance of the controller improves with successive iterations, but can be stopped by the user based on time or memory considerations. We illustrate the proposed method by a robot navigation case study.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2343363952 |
source | Free E- Journals |
subjects | Autonomous cars Decision making Iterative algorithms Iterative methods Markov analysis Markov processes Optimal control Optimization Poisson equation Robots Specifications Temporal logic |
title | Stochastic Finite State Control of POMDPs with LTL Specifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20Finite%20State%20Control%20of%20POMDPs%20with%20LTL%20Specifications&rft.jtitle=arXiv.org&rft.au=Ahmadi,%20Mohamadreza&rft.date=2020-01-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2343363952%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343363952&rft_id=info:pmid/&rfr_iscdi=true |