Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior
This investigation deals with the exposition of poly (ethylene terephthalate) to a series of surrogates following protocol recommended by United States Food and Drugs Administration. The samples presented different molecular characteristics associated to the type of process, such as reprocessing by...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2020, Vol.28 (1), p.91-99 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Journal of polymers and the environment |
container_volume | 28 |
creator | Fitaroni, Lays B. de Oliveira, Éder C. Marcomini, André L. Paranhos, Caio M. Freitas, Flávia L. Cruz, Sandra A. |
description | This investigation deals with the exposition of poly (ethylene terephthalate) to a series of surrogates following protocol recommended by United States Food and Drugs Administration. The samples presented different molecular characteristics associated to the type of process, such as reprocessing by extrusion and solid state polymerization (SSP). The nonisothermal, quiescent and shear flow crystallization for these samples were studied using differential scanning calorimetry, polarized light optical microscopy and rheometry technique. The quiescent results show that the higher the molar mass, the slower is the rate of the crystallization process. The samples that undergone the SSP process do not have influence with the presence of contaminants as this process results in higher level of decontamination. The shear-induced crystallization show that the presence of contaminants significantly reduces the number of entanglements, increasing mobility of the chains and thus the entropy of the system. Despite the significant change in the crystallization behavior, the results of the nonisothermal analysis corroborate the effects of the contamination, recycling and SSP processes on the crystalline nature of PET. The evaluation of the crystallization characteristics, especially in non-quiescent conditions, is extremely important for the prediction of the physicochemical properties and can modify the processing characteristics and the final applicability. |
doi_str_mv | 10.1007/s10924-019-01579-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343352928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343352928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-cdaaf33110f6147b6eb14885c3864da0ea471601f734e990bfbeae104d9573bb3</originalsourceid><addsrcrecordid>eNqNkElPwzAQhSMEEmX5A5wicUQBO3YWc4OITUICQTlbTjJpXaV2sV1Q-fVMG5YbQvIy0rzv2fOi6IiSU0pIceYpESlPCBW4s0IkYisaYZEmpaBie13neZJmnO1Ge97PCCECwVHkn2DhbAPeazOJlWnjZ9trPIMKED_afjUHpz9U0NbEuCprgpprg90W2z4kjTV-iaL48Wp8Ho-n4Oaq3zhVbuWD6vtv_BKm6k1bdxDtdKr3cPh170cv11fj6ja5f7i5qy7uk4ZlORq3SnWMUUq6nPKizqGmvCyzhpU5bxUBxQuaE9oVjIMQpO5qUEAJb0VWsLpm-9Hx4IsTvi7BBzmzS2fwSZkyzliWirREVTqoGme9d9DJhdNz5VaSErkOVw7hSgxXbsKVAqFygN6htp1vNJgGfkBMl4uUMS6wIrTSYRNAZZcmIHryfxTVbFB7VJgJuN8Z_vjeJ_1unwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343352928</pqid></control><display><type>article</type><title>Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>SpringerLink Journals - AutoHoldings</source><creator>Fitaroni, Lays B. ; de Oliveira, Éder C. ; Marcomini, André L. ; Paranhos, Caio M. ; Freitas, Flávia L. ; Cruz, Sandra A.</creator><creatorcontrib>Fitaroni, Lays B. ; de Oliveira, Éder C. ; Marcomini, André L. ; Paranhos, Caio M. ; Freitas, Flávia L. ; Cruz, Sandra A.</creatorcontrib><description>This investigation deals with the exposition of poly (ethylene terephthalate) to a series of surrogates following protocol recommended by United States Food and Drugs Administration. The samples presented different molecular characteristics associated to the type of process, such as reprocessing by extrusion and solid state polymerization (SSP). The nonisothermal, quiescent and shear flow crystallization for these samples were studied using differential scanning calorimetry, polarized light optical microscopy and rheometry technique. The quiescent results show that the higher the molar mass, the slower is the rate of the crystallization process. The samples that undergone the SSP process do not have influence with the presence of contaminants as this process results in higher level of decontamination. The shear-induced crystallization show that the presence of contaminants significantly reduces the number of entanglements, increasing mobility of the chains and thus the entropy of the system. Despite the significant change in the crystallization behavior, the results of the nonisothermal analysis corroborate the effects of the contamination, recycling and SSP processes on the crystalline nature of PET. The evaluation of the crystallization characteristics, especially in non-quiescent conditions, is extremely important for the prediction of the physicochemical properties and can modify the processing characteristics and the final applicability.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-019-01579-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calorimetry ; Chain mobility ; Chemistry ; Chemistry and Materials Science ; Contaminants ; Crystallization ; Decontamination ; Differential scanning calorimetry ; Engineering ; Engineering, Environmental ; Entropy ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Extrusion ; Food contamination ; Industrial Chemistry/Chemical Engineering ; Light microscopy ; Materials Science ; Optical microscopy ; Original Paper ; Physical Sciences ; Physicochemical properties ; Polarized light ; Polyethylene terephthalate ; Polymer Science ; Polymer Sciences ; Polymerization ; Reprocessing ; Rheometry ; Science & Technology ; Shear flow ; Solid state ; Technology</subject><ispartof>Journal of polymers and the environment, 2020, Vol.28 (1), p.91-99</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Polymers and the Environment is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000492334900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c356t-cdaaf33110f6147b6eb14885c3864da0ea471601f734e990bfbeae104d9573bb3</citedby><cites>FETCH-LOGICAL-c356t-cdaaf33110f6147b6eb14885c3864da0ea471601f734e990bfbeae104d9573bb3</cites><orcidid>0000-0002-2261-0585 ; 0000-0002-5548-0166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-019-01579-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-019-01579-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fitaroni, Lays B.</creatorcontrib><creatorcontrib>de Oliveira, Éder C.</creatorcontrib><creatorcontrib>Marcomini, André L.</creatorcontrib><creatorcontrib>Paranhos, Caio M.</creatorcontrib><creatorcontrib>Freitas, Flávia L.</creatorcontrib><creatorcontrib>Cruz, Sandra A.</creatorcontrib><title>Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><addtitle>J POLYM ENVIRON</addtitle><description>This investigation deals with the exposition of poly (ethylene terephthalate) to a series of surrogates following protocol recommended by United States Food and Drugs Administration. The samples presented different molecular characteristics associated to the type of process, such as reprocessing by extrusion and solid state polymerization (SSP). The nonisothermal, quiescent and shear flow crystallization for these samples were studied using differential scanning calorimetry, polarized light optical microscopy and rheometry technique. The quiescent results show that the higher the molar mass, the slower is the rate of the crystallization process. The samples that undergone the SSP process do not have influence with the presence of contaminants as this process results in higher level of decontamination. The shear-induced crystallization show that the presence of contaminants significantly reduces the number of entanglements, increasing mobility of the chains and thus the entropy of the system. Despite the significant change in the crystallization behavior, the results of the nonisothermal analysis corroborate the effects of the contamination, recycling and SSP processes on the crystalline nature of PET. The evaluation of the crystallization characteristics, especially in non-quiescent conditions, is extremely important for the prediction of the physicochemical properties and can modify the processing characteristics and the final applicability.</description><subject>Calorimetry</subject><subject>Chain mobility</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contaminants</subject><subject>Crystallization</subject><subject>Decontamination</subject><subject>Differential scanning calorimetry</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Entropy</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Extrusion</subject><subject>Food contamination</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Light microscopy</subject><subject>Materials Science</subject><subject>Optical microscopy</subject><subject>Original Paper</subject><subject>Physical Sciences</subject><subject>Physicochemical properties</subject><subject>Polarized light</subject><subject>Polyethylene terephthalate</subject><subject>Polymer Science</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Reprocessing</subject><subject>Rheometry</subject><subject>Science & Technology</subject><subject>Shear flow</subject><subject>Solid state</subject><subject>Technology</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkElPwzAQhSMEEmX5A5wicUQBO3YWc4OITUICQTlbTjJpXaV2sV1Q-fVMG5YbQvIy0rzv2fOi6IiSU0pIceYpESlPCBW4s0IkYisaYZEmpaBie13neZJmnO1Ge97PCCECwVHkn2DhbAPeazOJlWnjZ9trPIMKED_afjUHpz9U0NbEuCprgpprg90W2z4kjTV-iaL48Wp8Ho-n4Oaq3zhVbuWD6vtv_BKm6k1bdxDtdKr3cPh170cv11fj6ja5f7i5qy7uk4ZlORq3SnWMUUq6nPKizqGmvCyzhpU5bxUBxQuaE9oVjIMQpO5qUEAJb0VWsLpm-9Hx4IsTvi7BBzmzS2fwSZkyzliWirREVTqoGme9d9DJhdNz5VaSErkOVw7hSgxXbsKVAqFygN6htp1vNJgGfkBMl4uUMS6wIrTSYRNAZZcmIHryfxTVbFB7VJgJuN8Z_vjeJ_1unwY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fitaroni, Lays B.</creator><creator>de Oliveira, Éder C.</creator><creator>Marcomini, André L.</creator><creator>Paranhos, Caio M.</creator><creator>Freitas, Flávia L.</creator><creator>Cruz, Sandra A.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2261-0585</orcidid><orcidid>https://orcid.org/0000-0002-5548-0166</orcidid></search><sort><creationdate>2020</creationdate><title>Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior</title><author>Fitaroni, Lays B. ; de Oliveira, Éder C. ; Marcomini, André L. ; Paranhos, Caio M. ; Freitas, Flávia L. ; Cruz, Sandra A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-cdaaf33110f6147b6eb14885c3864da0ea471601f734e990bfbeae104d9573bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calorimetry</topic><topic>Chain mobility</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contaminants</topic><topic>Crystallization</topic><topic>Decontamination</topic><topic>Differential scanning calorimetry</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Entropy</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Extrusion</topic><topic>Food contamination</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Light microscopy</topic><topic>Materials Science</topic><topic>Optical microscopy</topic><topic>Original Paper</topic><topic>Physical Sciences</topic><topic>Physicochemical properties</topic><topic>Polarized light</topic><topic>Polyethylene terephthalate</topic><topic>Polymer Science</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Reprocessing</topic><topic>Rheometry</topic><topic>Science & Technology</topic><topic>Shear flow</topic><topic>Solid state</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitaroni, Lays B.</creatorcontrib><creatorcontrib>de Oliveira, Éder C.</creatorcontrib><creatorcontrib>Marcomini, André L.</creatorcontrib><creatorcontrib>Paranhos, Caio M.</creatorcontrib><creatorcontrib>Freitas, Flávia L.</creatorcontrib><creatorcontrib>Cruz, Sandra A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitaroni, Lays B.</au><au>de Oliveira, Éder C.</au><au>Marcomini, André L.</au><au>Paranhos, Caio M.</au><au>Freitas, Flávia L.</au><au>Cruz, Sandra A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><stitle>J POLYM ENVIRON</stitle><date>2020</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>91</spage><epage>99</epage><pages>91-99</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>This investigation deals with the exposition of poly (ethylene terephthalate) to a series of surrogates following protocol recommended by United States Food and Drugs Administration. The samples presented different molecular characteristics associated to the type of process, such as reprocessing by extrusion and solid state polymerization (SSP). The nonisothermal, quiescent and shear flow crystallization for these samples were studied using differential scanning calorimetry, polarized light optical microscopy and rheometry technique. The quiescent results show that the higher the molar mass, the slower is the rate of the crystallization process. The samples that undergone the SSP process do not have influence with the presence of contaminants as this process results in higher level of decontamination. The shear-induced crystallization show that the presence of contaminants significantly reduces the number of entanglements, increasing mobility of the chains and thus the entropy of the system. Despite the significant change in the crystallization behavior, the results of the nonisothermal analysis corroborate the effects of the contamination, recycling and SSP processes on the crystalline nature of PET. The evaluation of the crystallization characteristics, especially in non-quiescent conditions, is extremely important for the prediction of the physicochemical properties and can modify the processing characteristics and the final applicability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-019-01579-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2261-0585</orcidid><orcidid>https://orcid.org/0000-0002-5548-0166</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2020, Vol.28 (1), p.91-99 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_proquest_journals_2343352928 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; SpringerLink Journals - AutoHoldings |
subjects | Calorimetry Chain mobility Chemistry Chemistry and Materials Science Contaminants Crystallization Decontamination Differential scanning calorimetry Engineering Engineering, Environmental Entropy Environmental Chemistry Environmental Engineering/Biotechnology Extrusion Food contamination Industrial Chemistry/Chemical Engineering Light microscopy Materials Science Optical microscopy Original Paper Physical Sciences Physicochemical properties Polarized light Polyethylene terephthalate Polymer Science Polymer Sciences Polymerization Reprocessing Rheometry Science & Technology Shear flow Solid state Technology |
title | Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprocessing%20and%20Solid%20State%20Polymerization%20on%20Contaminated%20Post-consumer%20PET:%20Thermal%20and%20Crystallization%20Behavior&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Fitaroni,%20Lays%20B.&rft.date=2020&rft.volume=28&rft.issue=1&rft.spage=91&rft.epage=99&rft.pages=91-99&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-019-01579-9&rft_dat=%3Cproquest_cross%3E2343352928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343352928&rft_id=info:pmid/&rfr_iscdi=true |