Constructing observational learning agents using self-organizing maps
Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world...
Gespeichert in:
Veröffentlicht in: | Artificial life and robotics 2020-02, Vol.25 (1), p.73-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Artificial life and robotics |
container_volume | 25 |
creator | Manome, Nobuhito Shinohara, Shuji Suzuki, Kouta Chen, Yu Mitsuyoshi, Shunji |
description | Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree. |
doi_str_mv | 10.1007/s10015-019-00574-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343295263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343295263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-24ad6eb0b007720d29121d98cc8eb6d73204ae7466bc16c9b219aaa2c0996b3c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPC14juaryeYoy_oBC170HJI0LV26yZrXCvrrTa3gzct7bx4zwzAIXVNySwlRd1AmrTChGhNSKYHlCVpQSQVWopKn5Rac44rp9Tm6ANgTIhSRfIG2mxRhyKMfutiukoOQP-zQpWj7VR9sjtPbtiEOsBphAhD6Bqfc2th9Tfhgj3CJzhrbQ7j63Uv09rB93Tzh3cvj8-Z-hz1nfMBM2FoGR1yJrBipmaaM1nrt_To4WSvOiLBBCSmdp9Jrx6i21jJPtJaOe75EN7PvMaf3McBg9mnMJSsYxgVnumKSFxabWT4ngBwac8zdweZPQ4mZ6jJzXabUZX7qMrKI-CyCQo5tyH_W_6i-AWQybaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343295263</pqid></control><display><type>article</type><title>Constructing observational learning agents using self-organizing maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Manome, Nobuhito ; Shinohara, Shuji ; Suzuki, Kouta ; Chen, Yu ; Mitsuyoshi, Shunji</creator><creatorcontrib>Manome, Nobuhito ; Shinohara, Shuji ; Suzuki, Kouta ; Chen, Yu ; Mitsuyoshi, Shunji</creatorcontrib><description>Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-019-00574-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Computer simulation ; Control ; Learning ; Mechatronics ; Multiagent systems ; Original Article ; Robotics ; Self organizing maps ; Teacher evaluations</subject><ispartof>Artificial life and robotics, 2020-02, Vol.25 (1), p.73-80</ispartof><rights>International Society of Artificial Life and Robotics (ISAROB) 2019</rights><rights>2019© International Society of Artificial Life and Robotics (ISAROB) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-24ad6eb0b007720d29121d98cc8eb6d73204ae7466bc16c9b219aaa2c0996b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-019-00574-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-019-00574-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Manome, Nobuhito</creatorcontrib><creatorcontrib>Shinohara, Shuji</creatorcontrib><creatorcontrib>Suzuki, Kouta</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Mitsuyoshi, Shunji</creatorcontrib><title>Constructing observational learning agents using self-organizing maps</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.</description><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Self organizing maps</subject><subject>Teacher evaluations</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPC14juaryeYoy_oBC170HJI0LV26yZrXCvrrTa3gzct7bx4zwzAIXVNySwlRd1AmrTChGhNSKYHlCVpQSQVWopKn5Rac44rp9Tm6ANgTIhSRfIG2mxRhyKMfutiukoOQP-zQpWj7VR9sjtPbtiEOsBphAhD6Bqfc2th9Tfhgj3CJzhrbQ7j63Uv09rB93Tzh3cvj8-Z-hz1nfMBM2FoGR1yJrBipmaaM1nrt_To4WSvOiLBBCSmdp9Jrx6i21jJPtJaOe75EN7PvMaf3McBg9mnMJSsYxgVnumKSFxabWT4ngBwac8zdweZPQ4mZ6jJzXabUZX7qMrKI-CyCQo5tyH_W_6i-AWQybaw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Manome, Nobuhito</creator><creator>Shinohara, Shuji</creator><creator>Suzuki, Kouta</creator><creator>Chen, Yu</creator><creator>Mitsuyoshi, Shunji</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Constructing observational learning agents using self-organizing maps</title><author>Manome, Nobuhito ; Shinohara, Shuji ; Suzuki, Kouta ; Chen, Yu ; Mitsuyoshi, Shunji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-24ad6eb0b007720d29121d98cc8eb6d73204ae7466bc16c9b219aaa2c0996b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Self organizing maps</topic><topic>Teacher evaluations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manome, Nobuhito</creatorcontrib><creatorcontrib>Shinohara, Shuji</creatorcontrib><creatorcontrib>Suzuki, Kouta</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Mitsuyoshi, Shunji</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manome, Nobuhito</au><au>Shinohara, Shuji</au><au>Suzuki, Kouta</au><au>Chen, Yu</au><au>Mitsuyoshi, Shunji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing observational learning agents using self-organizing maps</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>25</volume><issue>1</issue><spage>73</spage><epage>80</epage><pages>73-80</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-019-00574-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2020-02, Vol.25 (1), p.73-80 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_journals_2343295263 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computation by Abstract Devices Computer Science Computer simulation Control Learning Mechatronics Multiagent systems Original Article Robotics Self organizing maps Teacher evaluations |
title | Constructing observational learning agents using self-organizing maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20observational%20learning%20agents%20using%20self-organizing%20maps&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Manome,%20Nobuhito&rft.date=2020-02-01&rft.volume=25&rft.issue=1&rft.spage=73&rft.epage=80&rft.pages=73-80&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-019-00574-6&rft_dat=%3Cproquest_cross%3E2343295263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343295263&rft_id=info:pmid/&rfr_iscdi=true |