Constructing observational learning agents using self-organizing maps

Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2020-02, Vol.25 (1), p.73-80
Hauptverfasser: Manome, Nobuhito, Shinohara, Shuji, Suzuki, Kouta, Chen, Yu, Mitsuyoshi, Shunji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 73
container_title Artificial life and robotics
container_volume 25
creator Manome, Nobuhito
Shinohara, Shuji
Suzuki, Kouta
Chen, Yu
Mitsuyoshi, Shunji
description Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.
doi_str_mv 10.1007/s10015-019-00574-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343295263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343295263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-24ad6eb0b007720d29121d98cc8eb6d73204ae7466bc16c9b219aaa2c0996b3c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPC14juaryeYoy_oBC170HJI0LV26yZrXCvrrTa3gzct7bx4zwzAIXVNySwlRd1AmrTChGhNSKYHlCVpQSQVWopKn5Rac44rp9Tm6ANgTIhSRfIG2mxRhyKMfutiukoOQP-zQpWj7VR9sjtPbtiEOsBphAhD6Bqfc2th9Tfhgj3CJzhrbQ7j63Uv09rB93Tzh3cvj8-Z-hz1nfMBM2FoGR1yJrBipmaaM1nrt_To4WSvOiLBBCSmdp9Jrx6i21jJPtJaOe75EN7PvMaf3McBg9mnMJSsYxgVnumKSFxabWT4ngBwac8zdweZPQ4mZ6jJzXabUZX7qMrKI-CyCQo5tyH_W_6i-AWQybaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343295263</pqid></control><display><type>article</type><title>Constructing observational learning agents using self-organizing maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Manome, Nobuhito ; Shinohara, Shuji ; Suzuki, Kouta ; Chen, Yu ; Mitsuyoshi, Shunji</creator><creatorcontrib>Manome, Nobuhito ; Shinohara, Shuji ; Suzuki, Kouta ; Chen, Yu ; Mitsuyoshi, Shunji</creatorcontrib><description>Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-019-00574-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Computer simulation ; Control ; Learning ; Mechatronics ; Multiagent systems ; Original Article ; Robotics ; Self organizing maps ; Teacher evaluations</subject><ispartof>Artificial life and robotics, 2020-02, Vol.25 (1), p.73-80</ispartof><rights>International Society of Artificial Life and Robotics (ISAROB) 2019</rights><rights>2019© International Society of Artificial Life and Robotics (ISAROB) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-24ad6eb0b007720d29121d98cc8eb6d73204ae7466bc16c9b219aaa2c0996b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-019-00574-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-019-00574-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Manome, Nobuhito</creatorcontrib><creatorcontrib>Shinohara, Shuji</creatorcontrib><creatorcontrib>Suzuki, Kouta</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Mitsuyoshi, Shunji</creatorcontrib><title>Constructing observational learning agents using self-organizing maps</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.</description><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Self organizing maps</subject><subject>Teacher evaluations</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPC14juaryeYoy_oBC170HJI0LV26yZrXCvrrTa3gzct7bx4zwzAIXVNySwlRd1AmrTChGhNSKYHlCVpQSQVWopKn5Rac44rp9Tm6ANgTIhSRfIG2mxRhyKMfutiukoOQP-zQpWj7VR9sjtPbtiEOsBphAhD6Bqfc2th9Tfhgj3CJzhrbQ7j63Uv09rB93Tzh3cvj8-Z-hz1nfMBM2FoGR1yJrBipmaaM1nrt_To4WSvOiLBBCSmdp9Jrx6i21jJPtJaOe75EN7PvMaf3McBg9mnMJSsYxgVnumKSFxabWT4ngBwac8zdweZPQ4mZ6jJzXabUZX7qMrKI-CyCQo5tyH_W_6i-AWQybaw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Manome, Nobuhito</creator><creator>Shinohara, Shuji</creator><creator>Suzuki, Kouta</creator><creator>Chen, Yu</creator><creator>Mitsuyoshi, Shunji</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Constructing observational learning agents using self-organizing maps</title><author>Manome, Nobuhito ; Shinohara, Shuji ; Suzuki, Kouta ; Chen, Yu ; Mitsuyoshi, Shunji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-24ad6eb0b007720d29121d98cc8eb6d73204ae7466bc16c9b219aaa2c0996b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Self organizing maps</topic><topic>Teacher evaluations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manome, Nobuhito</creatorcontrib><creatorcontrib>Shinohara, Shuji</creatorcontrib><creatorcontrib>Suzuki, Kouta</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Mitsuyoshi, Shunji</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manome, Nobuhito</au><au>Shinohara, Shuji</au><au>Suzuki, Kouta</au><au>Chen, Yu</au><au>Mitsuyoshi, Shunji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing observational learning agents using self-organizing maps</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>25</volume><issue>1</issue><spage>73</spage><epage>80</epage><pages>73-80</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Observational learning is a form of social learning whose theory proposes that new behaviors can be acquired through observing and imitating others. We employed Kohonen self-organizing maps to create observational learning agents to model the real-world process of observational learning. Real-world observational learning is a process that occurs through constantly changing nature and imperfect observation. In this study, we use observational learning agents to conduct a multiagent simulation of a cleanup problem comprising the chained tasks of picking up trash and subsequently discarding it. The results indicate that the constructed observational learning agents produce new emergent behaviors under changing, imperfect observation. Furthermore, the agents demonstrated the best performance when observing others to a moderate degree.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-019-00574-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2020-02, Vol.25 (1), p.73-80
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_journals_2343295263
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computation by Abstract Devices
Computer Science
Computer simulation
Control
Learning
Mechatronics
Multiagent systems
Original Article
Robotics
Self organizing maps
Teacher evaluations
title Constructing observational learning agents using self-organizing maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20observational%20learning%20agents%20using%20self-organizing%20maps&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Manome,%20Nobuhito&rft.date=2020-02-01&rft.volume=25&rft.issue=1&rft.spage=73&rft.epage=80&rft.pages=73-80&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-019-00574-6&rft_dat=%3Cproquest_cross%3E2343295263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343295263&rft_id=info:pmid/&rfr_iscdi=true