High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition
The ingots with nominal composition Pr 9.5 Fe 84 - x B 6.4 P 0.1 Zr x ( x = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s −1 . X-ray diffraction (XRD) results show that P addition decrea...
Gespeichert in:
Veröffentlicht in: | Rare metals 2020-01, Vol.39 (1), p.41-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Rare metals |
container_volume | 39 |
creator | Alam, Mehran Khan Han, Guang-Bing Kang, Shi-Shou |
description | The ingots with nominal composition
Pr
9.5
Fe
84
-
x
B
6.4
P
0.1
Zr
x
(
x
= 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s
−1
. X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m
−1
(2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity. |
doi_str_mv | 10.1007/s12598-019-01258-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343284921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343284921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEiFwASpL1Ev8Wj9KiAhBigQFNDTW4rUTR6wdbAeUY3ERzsTCItGlGM0U3z8z-gA4x-gSIyQmGZNayQph1RepZSUOwAhLLiqBZX3YzwjhCtUEH4OTnNcIMcY5GoH7uV-uoIk2Gf_uyw4-JDKzmF1Pvj6rmYWhCdHEbhOzLxZubOqaYEOBXbMMtmT44csKPifYtK0vPoZTcOSa12zP_voYPM1uHqfzanF_eze9WlSGMlEq4pRjqqHGCVk7jji2RHKi1AtR1lluJTP954K2LamdqY0hSrSUcG4QksbRMbgY9m5SfNvaXPQ6blPoT2pCGSWSKYL3UgTzWiLZw2NABsqkmHOyTm-S75q00xjpH7160Kt7vfpXrxZ9iA6h3MNhadP_6j2pb1DXfEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216580834</pqid></control><display><type>article</type><title>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Alam, Mehran Khan ; Han, Guang-Bing ; Kang, Shi-Shou</creator><creatorcontrib>Alam, Mehran Khan ; Han, Guang-Bing ; Kang, Shi-Shou</creatorcontrib><description>The ingots with nominal composition
Pr
9.5
Fe
84
-
x
B
6.4
P
0.1
Zr
x
(
x
= 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s
−1
. X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m
−1
(2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-019-01258-7</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Argon ; Biomaterials ; Chemistry and Materials Science ; Coercivity ; Electric arc furnaces ; Electron microscopes ; Energy ; Grain size ; Hysteresis loops ; Iron ; Materials Engineering ; Materials Science ; Melt spinning ; Metallic glasses ; Metallic Materials ; Nanocomposites ; Nanoscale Science and Technology ; Permanent magnets ; Physical Chemistry ; X-ray diffraction</subject><ispartof>Rare metals, 2020-01, Vol.39 (1), p.41-47</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Rare Metals is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>2019© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</citedby><cites>FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</cites><orcidid>0000-0002-3721-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-019-01258-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-019-01258-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alam, Mehran Khan</creatorcontrib><creatorcontrib>Han, Guang-Bing</creatorcontrib><creatorcontrib>Kang, Shi-Shou</creatorcontrib><title>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The ingots with nominal composition
Pr
9.5
Fe
84
-
x
B
6.4
P
0.1
Zr
x
(
x
= 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s
−1
. X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m
−1
(2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.</description><subject>Argon</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Electric arc furnaces</subject><subject>Electron microscopes</subject><subject>Energy</subject><subject>Grain size</subject><subject>Hysteresis loops</subject><subject>Iron</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Melt spinning</subject><subject>Metallic glasses</subject><subject>Metallic Materials</subject><subject>Nanocomposites</subject><subject>Nanoscale Science and Technology</subject><subject>Permanent magnets</subject><subject>Physical Chemistry</subject><subject>X-ray diffraction</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEiFwASpL1Ev8Wj9KiAhBigQFNDTW4rUTR6wdbAeUY3ERzsTCItGlGM0U3z8z-gA4x-gSIyQmGZNayQph1RepZSUOwAhLLiqBZX3YzwjhCtUEH4OTnNcIMcY5GoH7uV-uoIk2Gf_uyw4-JDKzmF1Pvj6rmYWhCdHEbhOzLxZubOqaYEOBXbMMtmT44csKPifYtK0vPoZTcOSa12zP_voYPM1uHqfzanF_eze9WlSGMlEq4pRjqqHGCVk7jji2RHKi1AtR1lluJTP954K2LamdqY0hSrSUcG4QksbRMbgY9m5SfNvaXPQ6blPoT2pCGSWSKYL3UgTzWiLZw2NABsqkmHOyTm-S75q00xjpH7160Kt7vfpXrxZ9iA6h3MNhadP_6j2pb1DXfEs</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Alam, Mehran Khan</creator><creator>Han, Guang-Bing</creator><creator>Kang, Shi-Shou</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3721-4470</orcidid></search><sort><creationdate>20200101</creationdate><title>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</title><author>Alam, Mehran Khan ; Han, Guang-Bing ; Kang, Shi-Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Argon</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Electric arc furnaces</topic><topic>Electron microscopes</topic><topic>Energy</topic><topic>Grain size</topic><topic>Hysteresis loops</topic><topic>Iron</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Melt spinning</topic><topic>Metallic glasses</topic><topic>Metallic Materials</topic><topic>Nanocomposites</topic><topic>Nanoscale Science and Technology</topic><topic>Permanent magnets</topic><topic>Physical Chemistry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Mehran Khan</creatorcontrib><creatorcontrib>Han, Guang-Bing</creatorcontrib><creatorcontrib>Kang, Shi-Shou</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Mehran Khan</au><au>Han, Guang-Bing</au><au>Kang, Shi-Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>41</spage><epage>47</epage><pages>41-47</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The ingots with nominal composition
Pr
9.5
Fe
84
-
x
B
6.4
P
0.1
Zr
x
(
x
= 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s
−1
. X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m
−1
(2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-019-01258-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3721-4470</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2020-01, Vol.39 (1), p.41-47 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2343284921 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Argon Biomaterials Chemistry and Materials Science Coercivity Electric arc furnaces Electron microscopes Energy Grain size Hysteresis loops Iron Materials Engineering Materials Science Melt spinning Metallic glasses Metallic Materials Nanocomposites Nanoscale Science and Technology Permanent magnets Physical Chemistry X-ray diffraction |
title | High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20coercivity%20Pr2Fe14B/%CE%B1-Fe%20nanocomposite%20permanent%20magnets%20with%20Zr%20addition&rft.jtitle=Rare%20metals&rft.au=Alam,%20Mehran%20Khan&rft.date=2020-01-01&rft.volume=39&rft.issue=1&rft.spage=41&rft.epage=47&rft.pages=41-47&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-019-01258-7&rft_dat=%3Cproquest_cross%3E2343284921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216580834&rft_id=info:pmid/&rfr_iscdi=true |