High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition

The ingots with nominal composition Pr 9.5 Fe 84 - x B 6.4 P 0.1 Zr x ( x  = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s −1 . X-ray diffraction (XRD) results show that P addition decrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2020-01, Vol.39 (1), p.41-47
Hauptverfasser: Alam, Mehran Khan, Han, Guang-Bing, Kang, Shi-Shou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 41
container_title Rare metals
container_volume 39
creator Alam, Mehran Khan
Han, Guang-Bing
Kang, Shi-Shou
description The ingots with nominal composition Pr 9.5 Fe 84 - x B 6.4 P 0.1 Zr x ( x  = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s −1 . X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m −1 (2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.
doi_str_mv 10.1007/s12598-019-01258-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343284921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343284921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEiFwASpL1Ev8Wj9KiAhBigQFNDTW4rUTR6wdbAeUY3ERzsTCItGlGM0U3z8z-gA4x-gSIyQmGZNayQph1RepZSUOwAhLLiqBZX3YzwjhCtUEH4OTnNcIMcY5GoH7uV-uoIk2Gf_uyw4-JDKzmF1Pvj6rmYWhCdHEbhOzLxZubOqaYEOBXbMMtmT44csKPifYtK0vPoZTcOSa12zP_voYPM1uHqfzanF_eze9WlSGMlEq4pRjqqHGCVk7jji2RHKi1AtR1lluJTP954K2LamdqY0hSrSUcG4QksbRMbgY9m5SfNvaXPQ6blPoT2pCGSWSKYL3UgTzWiLZw2NABsqkmHOyTm-S75q00xjpH7160Kt7vfpXrxZ9iA6h3MNhadP_6j2pb1DXfEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216580834</pqid></control><display><type>article</type><title>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Alam, Mehran Khan ; Han, Guang-Bing ; Kang, Shi-Shou</creator><creatorcontrib>Alam, Mehran Khan ; Han, Guang-Bing ; Kang, Shi-Shou</creatorcontrib><description>The ingots with nominal composition Pr 9.5 Fe 84 - x B 6.4 P 0.1 Zr x ( x  = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s −1 . X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m −1 (2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-019-01258-7</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Argon ; Biomaterials ; Chemistry and Materials Science ; Coercivity ; Electric arc furnaces ; Electron microscopes ; Energy ; Grain size ; Hysteresis loops ; Iron ; Materials Engineering ; Materials Science ; Melt spinning ; Metallic glasses ; Metallic Materials ; Nanocomposites ; Nanoscale Science and Technology ; Permanent magnets ; Physical Chemistry ; X-ray diffraction</subject><ispartof>Rare metals, 2020-01, Vol.39 (1), p.41-47</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Rare Metals is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>2019© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</citedby><cites>FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</cites><orcidid>0000-0002-3721-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-019-01258-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-019-01258-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alam, Mehran Khan</creatorcontrib><creatorcontrib>Han, Guang-Bing</creatorcontrib><creatorcontrib>Kang, Shi-Shou</creatorcontrib><title>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The ingots with nominal composition Pr 9.5 Fe 84 - x B 6.4 P 0.1 Zr x ( x  = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s −1 . X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m −1 (2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.</description><subject>Argon</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Electric arc furnaces</subject><subject>Electron microscopes</subject><subject>Energy</subject><subject>Grain size</subject><subject>Hysteresis loops</subject><subject>Iron</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Melt spinning</subject><subject>Metallic glasses</subject><subject>Metallic Materials</subject><subject>Nanocomposites</subject><subject>Nanoscale Science and Technology</subject><subject>Permanent magnets</subject><subject>Physical Chemistry</subject><subject>X-ray diffraction</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEiFwASpL1Ev8Wj9KiAhBigQFNDTW4rUTR6wdbAeUY3ERzsTCItGlGM0U3z8z-gA4x-gSIyQmGZNayQph1RepZSUOwAhLLiqBZX3YzwjhCtUEH4OTnNcIMcY5GoH7uV-uoIk2Gf_uyw4-JDKzmF1Pvj6rmYWhCdHEbhOzLxZubOqaYEOBXbMMtmT44csKPifYtK0vPoZTcOSa12zP_voYPM1uHqfzanF_eze9WlSGMlEq4pRjqqHGCVk7jji2RHKi1AtR1lluJTP954K2LamdqY0hSrSUcG4QksbRMbgY9m5SfNvaXPQ6blPoT2pCGSWSKYL3UgTzWiLZw2NABsqkmHOyTm-S75q00xjpH7160Kt7vfpXrxZ9iA6h3MNhadP_6j2pb1DXfEs</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Alam, Mehran Khan</creator><creator>Han, Guang-Bing</creator><creator>Kang, Shi-Shou</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3721-4470</orcidid></search><sort><creationdate>20200101</creationdate><title>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</title><author>Alam, Mehran Khan ; Han, Guang-Bing ; Kang, Shi-Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2f9f49a3cf785f6061e286299b29efe6e84c71873dd25fc5cc297d3266c008cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Argon</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Electric arc furnaces</topic><topic>Electron microscopes</topic><topic>Energy</topic><topic>Grain size</topic><topic>Hysteresis loops</topic><topic>Iron</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Melt spinning</topic><topic>Metallic glasses</topic><topic>Metallic Materials</topic><topic>Nanocomposites</topic><topic>Nanoscale Science and Technology</topic><topic>Permanent magnets</topic><topic>Physical Chemistry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Mehran Khan</creatorcontrib><creatorcontrib>Han, Guang-Bing</creatorcontrib><creatorcontrib>Kang, Shi-Shou</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Mehran Khan</au><au>Han, Guang-Bing</au><au>Kang, Shi-Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>41</spage><epage>47</epage><pages>41-47</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The ingots with nominal composition Pr 9.5 Fe 84 - x B 6.4 P 0.1 Zr x ( x  = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s −1 . X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m −1 (2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-019-01258-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3721-4470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2020-01, Vol.39 (1), p.41-47
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2343284921
source SpringerLink Journals; Alma/SFX Local Collection
subjects Argon
Biomaterials
Chemistry and Materials Science
Coercivity
Electric arc furnaces
Electron microscopes
Energy
Grain size
Hysteresis loops
Iron
Materials Engineering
Materials Science
Melt spinning
Metallic glasses
Metallic Materials
Nanocomposites
Nanoscale Science and Technology
Permanent magnets
Physical Chemistry
X-ray diffraction
title High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20coercivity%20Pr2Fe14B/%CE%B1-Fe%20nanocomposite%20permanent%20magnets%20with%20Zr%20addition&rft.jtitle=Rare%20metals&rft.au=Alam,%20Mehran%20Khan&rft.date=2020-01-01&rft.volume=39&rft.issue=1&rft.spage=41&rft.epage=47&rft.pages=41-47&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-019-01258-7&rft_dat=%3Cproquest_cross%3E2343284921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216580834&rft_id=info:pmid/&rfr_iscdi=true