The total variation flow in metric random walk spaces

In this paper we study the total variation flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2020-02, Vol.59 (1), Article 29
Hauptverfasser: Mazón, José M., Solera, Marcos, Toledo, Julián
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 59
creator Mazón, José M.
Solera, Marcos
Toledo, Julián
description In this paper we study the total variation flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic behaviour of those solutions and, with that aim in view, we establish some inequalities of Poincaré type. In particular, for finite weighted connected graphs, we show that the solutions reach the average of the initial data in finite time. Furthermore, we introduce the concepts of perimeter and mean curvature for subsets of a metric random walk space and we study the relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize calibrability by using the 1-Laplacian operator. Finally, we study the eigenvalue problem whereby we give a method to solve the optimal Cheeger cut problem.
doi_str_mv 10.1007/s00526-019-1684-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343284458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343284458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-604e2eeea0bb3d3723f47a94e69cf1363109c4fd4cd37befe83f8791c98a11343</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3AdfS9JJNJllL8goKbug5pmujU6UxNphb99aaM4MrVW9x77oNDyCXCNQLUNxmg4ooBGoZKS_Z9RCYoBWegRXVMJmCkZFwpc0rOcl4DYKW5nJBq8Rbo0A-upZ8uNW5o-o7Gtt_TpqObMKTG0-S6Vb-he9e-07x1PuRzchJdm8PF752Sl_u7xeyRzZ8fnma3c-YFqoEpkIGHEBwsl2Ilai6irJ2RQRkfUSiBYLyMK-lLuAwxaBF1bdAb7RCFFFNyNe5uU_-xC3mw636XuvLS8hJzLWWlSwvHlk99zilEu03NxqUvi2APduxoxxY79mDHfheGj0wu3e41pL_l_6EfrrBnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343284458</pqid></control><display><type>article</type><title>The total variation flow in metric random walk spaces</title><source>SpringerNature Journals</source><creator>Mazón, José M. ; Solera, Marcos ; Toledo, Julián</creator><creatorcontrib>Mazón, José M. ; Solera, Marcos ; Toledo, Julián</creatorcontrib><description>In this paper we study the total variation flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic behaviour of those solutions and, with that aim in view, we establish some inequalities of Poincaré type. In particular, for finite weighted connected graphs, we show that the solutions reach the average of the initial data in finite time. Furthermore, we introduce the concepts of perimeter and mean curvature for subsets of a metric random walk space and we study the relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize calibrability by using the 1-Laplacian operator. Finally, we study the eigenvalue problem whereby we give a method to solve the optimal Cheeger cut problem.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-019-1684-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Control ; Economic models ; Eigenvalues ; Graphs ; Inequalities ; Markov chains ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Random walk ; Random walk theory ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2020-02, Vol.59 (1), Article 29</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>2020© Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-604e2eeea0bb3d3723f47a94e69cf1363109c4fd4cd37befe83f8791c98a11343</citedby><cites>FETCH-LOGICAL-c316t-604e2eeea0bb3d3723f47a94e69cf1363109c4fd4cd37befe83f8791c98a11343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-019-1684-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-019-1684-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mazón, José M.</creatorcontrib><creatorcontrib>Solera, Marcos</creatorcontrib><creatorcontrib>Toledo, Julián</creatorcontrib><title>The total variation flow in metric random walk spaces</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In this paper we study the total variation flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic behaviour of those solutions and, with that aim in view, we establish some inequalities of Poincaré type. In particular, for finite weighted connected graphs, we show that the solutions reach the average of the initial data in finite time. Furthermore, we introduce the concepts of perimeter and mean curvature for subsets of a metric random walk space and we study the relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize calibrability by using the 1-Laplacian operator. Finally, we study the eigenvalue problem whereby we give a method to solve the optimal Cheeger cut problem.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Economic models</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Inequalities</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wF3AdfS9JJNJllL8goKbug5pmujU6UxNphb99aaM4MrVW9x77oNDyCXCNQLUNxmg4ooBGoZKS_Z9RCYoBWegRXVMJmCkZFwpc0rOcl4DYKW5nJBq8Rbo0A-upZ8uNW5o-o7Gtt_TpqObMKTG0-S6Vb-he9e-07x1PuRzchJdm8PF752Sl_u7xeyRzZ8fnma3c-YFqoEpkIGHEBwsl2Ilai6irJ2RQRkfUSiBYLyMK-lLuAwxaBF1bdAb7RCFFFNyNe5uU_-xC3mw636XuvLS8hJzLWWlSwvHlk99zilEu03NxqUvi2APduxoxxY79mDHfheGj0wu3e41pL_l_6EfrrBnJQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Mazón, José M.</creator><creator>Solera, Marcos</creator><creator>Toledo, Julián</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20200201</creationdate><title>The total variation flow in metric random walk spaces</title><author>Mazón, José M. ; Solera, Marcos ; Toledo, Julián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-604e2eeea0bb3d3723f47a94e69cf1363109c4fd4cd37befe83f8791c98a11343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Economic models</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Inequalities</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazón, José M.</creatorcontrib><creatorcontrib>Solera, Marcos</creatorcontrib><creatorcontrib>Toledo, Julián</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazón, José M.</au><au>Solera, Marcos</au><au>Toledo, Julián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The total variation flow in metric random walk spaces</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>59</volume><issue>1</issue><artnum>29</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper we study the total variation flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic behaviour of those solutions and, with that aim in view, we establish some inequalities of Poincaré type. In particular, for finite weighted connected graphs, we show that the solutions reach the average of the initial data in finite time. Furthermore, we introduce the concepts of perimeter and mean curvature for subsets of a metric random walk space and we study the relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize calibrability by using the 1-Laplacian operator. Finally, we study the eigenvalue problem whereby we give a method to solve the optimal Cheeger cut problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-019-1684-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2020-02, Vol.59 (1), Article 29
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2343284458
source SpringerNature Journals
subjects Analysis
Asymptotic properties
Calculus of Variations and Optimal Control
Optimization
Control
Economic models
Eigenvalues
Graphs
Inequalities
Markov chains
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Random walk
Random walk theory
Systems Theory
Theoretical
title The total variation flow in metric random walk spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20total%20variation%20flow%20in%20metric%20random%20walk%20spaces&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Maz%C3%B3n,%20Jos%C3%A9%20M.&rft.date=2020-02-01&rft.volume=59&rft.issue=1&rft.artnum=29&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-019-1684-z&rft_dat=%3Cproquest_cross%3E2343284458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343284458&rft_id=info:pmid/&rfr_iscdi=true