Downsizing and Silicon Integration of Photoacoustic Gas Cells
Downsizing and compatibility with MEMS silicon foundries is an attractive path towards a large diffusion of photoacoustic trace gas sensors. As the photoacoustic signal scales inversely with the chamber volume, a trend to miniaturization has been followed by several teams. We review in this article...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2020, Vol.41 (2), Article 16 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of thermophysics |
container_volume | 41 |
creator | Glière, A. Barritault, P. Berthelot, A. Constancias, C. Coutard, J.-G. Desloges, B. Duraffourg, L. Fedeli, J.-M. Garcia, M. Lartigue, O. Lhermet, H. Marchant, A. Rouxel, J. Skubich, J. Teulle, A. Verdot, T. Nicoletti, S. |
description | Downsizing and compatibility with MEMS silicon foundries is an attractive path towards a large diffusion of photoacoustic trace gas sensors. As the photoacoustic signal scales inversely with the chamber volume, a trend to miniaturization has been followed by several teams. We review in this article the approach initiated several years ago in our laboratory. Three generations of components, namely a 40 mm
3
3D-printed cell, a 3.7 mm
3
silicon cell, and a 2.3 mm
3
silicon cell with a built-in piezoresistive pressure sensor, have been designed. The models used take into account the viscous and thermal losses, which cannot be neglected for such small-sized resonators. The components have been fabricated either by additive manufacturing or microfabrication and characterized. Based on a compilation of experimental data, a similar sub-ppm limit of detection is demonstrated. All three versions of photoacoustic cells have their own domain of operation as each one has benefits and drawbacks, regarding fabrication, implementation, and ease of use. |
doi_str_mv | 10.1007/s10765-019-2580-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343281268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343281268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5581a7091202771b3cfb1882a651eac9746590e289745014b65ccdd792895fdd3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC5-gk2_w7eJBqa6GgoIK3kGazNWVNarJF9NObsoInT_Ng3nsz_BA6J3BJAMRVJiA4w0AUpkwCFgdoRJigWDEuDtGoLBhWVL4eo5OcNwCghKpH6Po2fobsv31YVyY01ZPvvI2hWoTerZPpfdGxrR7fYh-Njbvce1vNTa6mruvyKTpqTZfd2e8co5fZ3fP0Hi8f5ovpzRLbWvEeMyaJEaAIBSoEWdW2XREpqeGMOGOVmHCmwFFZFAMyWXFmbdOI8q9ibdPUY3Qx9G5T_Ni53OtN3KVQTmpaT2oqCeWyuMjgsinmnFyrt8m_m_SlCeg9JT1Q0gWG3lPSomTokMnFG9Yu_TX_H_oBpnJoaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343281268</pqid></control><display><type>article</type><title>Downsizing and Silicon Integration of Photoacoustic Gas Cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Glière, A. ; Barritault, P. ; Berthelot, A. ; Constancias, C. ; Coutard, J.-G. ; Desloges, B. ; Duraffourg, L. ; Fedeli, J.-M. ; Garcia, M. ; Lartigue, O. ; Lhermet, H. ; Marchant, A. ; Rouxel, J. ; Skubich, J. ; Teulle, A. ; Verdot, T. ; Nicoletti, S.</creator><creatorcontrib>Glière, A. ; Barritault, P. ; Berthelot, A. ; Constancias, C. ; Coutard, J.-G. ; Desloges, B. ; Duraffourg, L. ; Fedeli, J.-M. ; Garcia, M. ; Lartigue, O. ; Lhermet, H. ; Marchant, A. ; Rouxel, J. ; Skubich, J. ; Teulle, A. ; Verdot, T. ; Nicoletti, S.</creatorcontrib><description>Downsizing and compatibility with MEMS silicon foundries is an attractive path towards a large diffusion of photoacoustic trace gas sensors. As the photoacoustic signal scales inversely with the chamber volume, a trend to miniaturization has been followed by several teams. We review in this article the approach initiated several years ago in our laboratory. Three generations of components, namely a 40 mm
3
3D-printed cell, a 3.7 mm
3
silicon cell, and a 2.3 mm
3
silicon cell with a built-in piezoresistive pressure sensor, have been designed. The models used take into account the viscous and thermal losses, which cannot be neglected for such small-sized resonators. The components have been fabricated either by additive manufacturing or microfabrication and characterized. Based on a compilation of experimental data, a similar sub-ppm limit of detection is demonstrated. All three versions of photoacoustic cells have their own domain of operation as each one has benefits and drawbacks, regarding fabrication, implementation, and ease of use.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-019-2580-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical Mechanics ; Condensed Matter Physics ; Downsizing ; Foundries ; Gas sensors ; Geophysics ; Icppp 20 ; ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena ; Industrial Chemistry/Chemical Engineering ; Miniaturization ; Photoacoustic cells ; Physical Chemistry ; Physics ; Physics and Astronomy ; Pressure sensors ; Silicon ; Thermodynamics ; Three dimensional printing ; Trace gases</subject><ispartof>International journal of thermophysics, 2020, Vol.41 (2), Article 16</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5581a7091202771b3cfb1882a651eac9746590e289745014b65ccdd792895fdd3</citedby><cites>FETCH-LOGICAL-c396t-5581a7091202771b3cfb1882a651eac9746590e289745014b65ccdd792895fdd3</cites><orcidid>0000-0002-8017-4566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-019-2580-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-019-2580-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Glière, A.</creatorcontrib><creatorcontrib>Barritault, P.</creatorcontrib><creatorcontrib>Berthelot, A.</creatorcontrib><creatorcontrib>Constancias, C.</creatorcontrib><creatorcontrib>Coutard, J.-G.</creatorcontrib><creatorcontrib>Desloges, B.</creatorcontrib><creatorcontrib>Duraffourg, L.</creatorcontrib><creatorcontrib>Fedeli, J.-M.</creatorcontrib><creatorcontrib>Garcia, M.</creatorcontrib><creatorcontrib>Lartigue, O.</creatorcontrib><creatorcontrib>Lhermet, H.</creatorcontrib><creatorcontrib>Marchant, A.</creatorcontrib><creatorcontrib>Rouxel, J.</creatorcontrib><creatorcontrib>Skubich, J.</creatorcontrib><creatorcontrib>Teulle, A.</creatorcontrib><creatorcontrib>Verdot, T.</creatorcontrib><creatorcontrib>Nicoletti, S.</creatorcontrib><title>Downsizing and Silicon Integration of Photoacoustic Gas Cells</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>Downsizing and compatibility with MEMS silicon foundries is an attractive path towards a large diffusion of photoacoustic trace gas sensors. As the photoacoustic signal scales inversely with the chamber volume, a trend to miniaturization has been followed by several teams. We review in this article the approach initiated several years ago in our laboratory. Three generations of components, namely a 40 mm
3
3D-printed cell, a 3.7 mm
3
silicon cell, and a 2.3 mm
3
silicon cell with a built-in piezoresistive pressure sensor, have been designed. The models used take into account the viscous and thermal losses, which cannot be neglected for such small-sized resonators. The components have been fabricated either by additive manufacturing or microfabrication and characterized. Based on a compilation of experimental data, a similar sub-ppm limit of detection is demonstrated. All three versions of photoacoustic cells have their own domain of operation as each one has benefits and drawbacks, regarding fabrication, implementation, and ease of use.</description><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Downsizing</subject><subject>Foundries</subject><subject>Gas sensors</subject><subject>Geophysics</subject><subject>Icppp 20</subject><subject>ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Miniaturization</subject><subject>Photoacoustic cells</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure sensors</subject><subject>Silicon</subject><subject>Thermodynamics</subject><subject>Three dimensional printing</subject><subject>Trace gases</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC5-gk2_w7eJBqa6GgoIK3kGazNWVNarJF9NObsoInT_Ng3nsz_BA6J3BJAMRVJiA4w0AUpkwCFgdoRJigWDEuDtGoLBhWVL4eo5OcNwCghKpH6Po2fobsv31YVyY01ZPvvI2hWoTerZPpfdGxrR7fYh-Njbvce1vNTa6mruvyKTpqTZfd2e8co5fZ3fP0Hi8f5ovpzRLbWvEeMyaJEaAIBSoEWdW2XREpqeGMOGOVmHCmwFFZFAMyWXFmbdOI8q9ibdPUY3Qx9G5T_Ni53OtN3KVQTmpaT2oqCeWyuMjgsinmnFyrt8m_m_SlCeg9JT1Q0gWG3lPSomTokMnFG9Yu_TX_H_oBpnJoaQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Glière, A.</creator><creator>Barritault, P.</creator><creator>Berthelot, A.</creator><creator>Constancias, C.</creator><creator>Coutard, J.-G.</creator><creator>Desloges, B.</creator><creator>Duraffourg, L.</creator><creator>Fedeli, J.-M.</creator><creator>Garcia, M.</creator><creator>Lartigue, O.</creator><creator>Lhermet, H.</creator><creator>Marchant, A.</creator><creator>Rouxel, J.</creator><creator>Skubich, J.</creator><creator>Teulle, A.</creator><creator>Verdot, T.</creator><creator>Nicoletti, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8017-4566</orcidid></search><sort><creationdate>2020</creationdate><title>Downsizing and Silicon Integration of Photoacoustic Gas Cells</title><author>Glière, A. ; Barritault, P. ; Berthelot, A. ; Constancias, C. ; Coutard, J.-G. ; Desloges, B. ; Duraffourg, L. ; Fedeli, J.-M. ; Garcia, M. ; Lartigue, O. ; Lhermet, H. ; Marchant, A. ; Rouxel, J. ; Skubich, J. ; Teulle, A. ; Verdot, T. ; Nicoletti, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5581a7091202771b3cfb1882a651eac9746590e289745014b65ccdd792895fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Downsizing</topic><topic>Foundries</topic><topic>Gas sensors</topic><topic>Geophysics</topic><topic>Icppp 20</topic><topic>ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Miniaturization</topic><topic>Photoacoustic cells</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure sensors</topic><topic>Silicon</topic><topic>Thermodynamics</topic><topic>Three dimensional printing</topic><topic>Trace gases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glière, A.</creatorcontrib><creatorcontrib>Barritault, P.</creatorcontrib><creatorcontrib>Berthelot, A.</creatorcontrib><creatorcontrib>Constancias, C.</creatorcontrib><creatorcontrib>Coutard, J.-G.</creatorcontrib><creatorcontrib>Desloges, B.</creatorcontrib><creatorcontrib>Duraffourg, L.</creatorcontrib><creatorcontrib>Fedeli, J.-M.</creatorcontrib><creatorcontrib>Garcia, M.</creatorcontrib><creatorcontrib>Lartigue, O.</creatorcontrib><creatorcontrib>Lhermet, H.</creatorcontrib><creatorcontrib>Marchant, A.</creatorcontrib><creatorcontrib>Rouxel, J.</creatorcontrib><creatorcontrib>Skubich, J.</creatorcontrib><creatorcontrib>Teulle, A.</creatorcontrib><creatorcontrib>Verdot, T.</creatorcontrib><creatorcontrib>Nicoletti, S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glière, A.</au><au>Barritault, P.</au><au>Berthelot, A.</au><au>Constancias, C.</au><au>Coutard, J.-G.</au><au>Desloges, B.</au><au>Duraffourg, L.</au><au>Fedeli, J.-M.</au><au>Garcia, M.</au><au>Lartigue, O.</au><au>Lhermet, H.</au><au>Marchant, A.</au><au>Rouxel, J.</au><au>Skubich, J.</au><au>Teulle, A.</au><au>Verdot, T.</au><au>Nicoletti, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downsizing and Silicon Integration of Photoacoustic Gas Cells</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2020</date><risdate>2020</risdate><volume>41</volume><issue>2</issue><artnum>16</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>Downsizing and compatibility with MEMS silicon foundries is an attractive path towards a large diffusion of photoacoustic trace gas sensors. As the photoacoustic signal scales inversely with the chamber volume, a trend to miniaturization has been followed by several teams. We review in this article the approach initiated several years ago in our laboratory. Three generations of components, namely a 40 mm
3
3D-printed cell, a 3.7 mm
3
silicon cell, and a 2.3 mm
3
silicon cell with a built-in piezoresistive pressure sensor, have been designed. The models used take into account the viscous and thermal losses, which cannot be neglected for such small-sized resonators. The components have been fabricated either by additive manufacturing or microfabrication and characterized. Based on a compilation of experimental data, a similar sub-ppm limit of detection is demonstrated. All three versions of photoacoustic cells have their own domain of operation as each one has benefits and drawbacks, regarding fabrication, implementation, and ease of use.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-019-2580-7</doi><orcidid>https://orcid.org/0000-0002-8017-4566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-928X |
ispartof | International journal of thermophysics, 2020, Vol.41 (2), Article 16 |
issn | 0195-928X 1572-9567 |
language | eng |
recordid | cdi_proquest_journals_2343281268 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Mechanics Condensed Matter Physics Downsizing Foundries Gas sensors Geophysics Icppp 20 ICPPP-20: Selected Papers of the 20th International Conference on Photoacoustic and Photothermal Phenomena Industrial Chemistry/Chemical Engineering Miniaturization Photoacoustic cells Physical Chemistry Physics Physics and Astronomy Pressure sensors Silicon Thermodynamics Three dimensional printing Trace gases |
title | Downsizing and Silicon Integration of Photoacoustic Gas Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downsizing%20and%20Silicon%20Integration%20of%20Photoacoustic%20Gas%20Cells&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Gli%C3%A8re,%20A.&rft.date=2020&rft.volume=41&rft.issue=2&rft.artnum=16&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-019-2580-7&rft_dat=%3Cproquest_cross%3E2343281268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343281268&rft_id=info:pmid/&rfr_iscdi=true |