Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs

Erbium-doped fiber amplifier (EDFA) is widely recognized as one of the most important optical amplifiers in distributed optical fiber sensors which has been able to compensate the loss of the optical power. The 980 nm and 1480 nm are the most efficient pumps for amplifying the 1550 nm signal in EDFA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2020-02, Vol.52 (2), Article 75
Hauptverfasser: Malakzadeh, Abdollah, Pashaie, Rasoul, Mansoursamaei, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Optical and quantum electronics
container_volume 52
creator Malakzadeh, Abdollah
Pashaie, Rasoul
Mansoursamaei, Mohsen
description Erbium-doped fiber amplifier (EDFA) is widely recognized as one of the most important optical amplifiers in distributed optical fiber sensors which has been able to compensate the loss of the optical power. The 980 nm and 1480 nm are the most efficient pumps for amplifying the 1550 nm signal in EDFA. This paper presented an investigation for influences of pump power, signal power and EDF length on the gain and noise figure in an EDFA which pumped by 980 nm and 1480 nm pumps. It is also a comparison for each of the created gain and noise figure at the forward, backward, and bi-directional pumping configurations, separately. The effects of Rayleigh scattering, temperature, homogeneous interactions between Erbium ions and the amplified spontaneous emission are considered. As a result, Bi-directional pumping shows the highest gain value, and forward pumping presents the lowest noise figure for each pump. Moreover, backward pumping creates the highest noise figure and forward pumping generated the lowest gain value. The gain of 980 nm pump is higher than 1480 nm up to 5-m EDF length and for longer lengths, it becomes vice versa. The 980 nm pump caused a lower noise figure than 1480 nm for EDF length up to 10 m and it becomes vice versa for longer lengths.
doi_str_mv 10.1007/s11082-019-2186-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343272235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343272235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-41f3071427e0a85c921381afbb5afba18b3d59caef7eadc2f1fabfe03c50a0463</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKsP4C3gOTqT7G6yx9IvhUIPVvAWsrtJ2eJ-mHQPvo3P4pOZsgVPXmYG5v-bgR8h9wiPCCCfAiIozgBzxlFlDC7IBFPJmUL5fkkmICBjKsf8mtyEcACALElhQnZrU7fUtBVtuzpY6ur94C3trXedb0xbWtq5uKfLxWpG-6HpbUXNkeYKfr7bhnaeYnKeI0EX29VruCVXznwEe3fuU_K2Wu7mz2yzXb_MZxtWCsyOLEEnQGLCpQWj0jLnKBQaVxRpLAZVIao0L4110pqq5A6dKZwFUaZgIMnElDyMd3vffQ42HPWhG3wbX2ouEsEl5yKNKRxTpe9C8Nbp3teN8V8aQZ_k6VGejvL0SZ6GyPCRCTHb7q3_u_w_9At9JnDN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343272235</pqid></control><display><type>article</type><title>Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Malakzadeh, Abdollah ; Pashaie, Rasoul ; Mansoursamaei, Mohsen</creator><creatorcontrib>Malakzadeh, Abdollah ; Pashaie, Rasoul ; Mansoursamaei, Mohsen</creatorcontrib><description>Erbium-doped fiber amplifier (EDFA) is widely recognized as one of the most important optical amplifiers in distributed optical fiber sensors which has been able to compensate the loss of the optical power. The 980 nm and 1480 nm are the most efficient pumps for amplifying the 1550 nm signal in EDFA. This paper presented an investigation for influences of pump power, signal power and EDF length on the gain and noise figure in an EDFA which pumped by 980 nm and 1480 nm pumps. It is also a comparison for each of the created gain and noise figure at the forward, backward, and bi-directional pumping configurations, separately. The effects of Rayleigh scattering, temperature, homogeneous interactions between Erbium ions and the amplified spontaneous emission are considered. As a result, Bi-directional pumping shows the highest gain value, and forward pumping presents the lowest noise figure for each pump. Moreover, backward pumping creates the highest noise figure and forward pumping generated the lowest gain value. The gain of 980 nm pump is higher than 1480 nm up to 5-m EDF length and for longer lengths, it becomes vice versa. The 980 nm pump caused a lower noise figure than 1480 nm for EDF length up to 10 m and it becomes vice versa for longer lengths.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-2186-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amplifiers ; Characterization and Evaluation of Materials ; Computer Communication Networks ; Doped fibers ; Electrical Engineering ; Erbium ; Lasers ; Noise ; Optical Devices ; Optical fibers ; Optical pumping ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Pumps ; Quality of service ; Rayleigh scattering ; Spontaneous emission ; Test methods</subject><ispartof>Optical and quantum electronics, 2020-02, Vol.52 (2), Article 75</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-41f3071427e0a85c921381afbb5afba18b3d59caef7eadc2f1fabfe03c50a0463</citedby><cites>FETCH-LOGICAL-c316t-41f3071427e0a85c921381afbb5afba18b3d59caef7eadc2f1fabfe03c50a0463</cites><orcidid>0000-0003-4864-2697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-019-2186-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-019-2186-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Malakzadeh, Abdollah</creatorcontrib><creatorcontrib>Pashaie, Rasoul</creatorcontrib><creatorcontrib>Mansoursamaei, Mohsen</creatorcontrib><title>Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Erbium-doped fiber amplifier (EDFA) is widely recognized as one of the most important optical amplifiers in distributed optical fiber sensors which has been able to compensate the loss of the optical power. The 980 nm and 1480 nm are the most efficient pumps for amplifying the 1550 nm signal in EDFA. This paper presented an investigation for influences of pump power, signal power and EDF length on the gain and noise figure in an EDFA which pumped by 980 nm and 1480 nm pumps. It is also a comparison for each of the created gain and noise figure at the forward, backward, and bi-directional pumping configurations, separately. The effects of Rayleigh scattering, temperature, homogeneous interactions between Erbium ions and the amplified spontaneous emission are considered. As a result, Bi-directional pumping shows the highest gain value, and forward pumping presents the lowest noise figure for each pump. Moreover, backward pumping creates the highest noise figure and forward pumping generated the lowest gain value. The gain of 980 nm pump is higher than 1480 nm up to 5-m EDF length and for longer lengths, it becomes vice versa. The 980 nm pump caused a lower noise figure than 1480 nm for EDF length up to 10 m and it becomes vice versa for longer lengths.</description><subject>Amplifiers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Doped fibers</subject><subject>Electrical Engineering</subject><subject>Erbium</subject><subject>Lasers</subject><subject>Noise</subject><subject>Optical Devices</subject><subject>Optical fibers</subject><subject>Optical pumping</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pumps</subject><subject>Quality of service</subject><subject>Rayleigh scattering</subject><subject>Spontaneous emission</subject><subject>Test methods</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWKsP4C3gOTqT7G6yx9IvhUIPVvAWsrtJ2eJ-mHQPvo3P4pOZsgVPXmYG5v-bgR8h9wiPCCCfAiIozgBzxlFlDC7IBFPJmUL5fkkmICBjKsf8mtyEcACALElhQnZrU7fUtBVtuzpY6ur94C3trXedb0xbWtq5uKfLxWpG-6HpbUXNkeYKfr7bhnaeYnKeI0EX29VruCVXznwEe3fuU_K2Wu7mz2yzXb_MZxtWCsyOLEEnQGLCpQWj0jLnKBQaVxRpLAZVIao0L4110pqq5A6dKZwFUaZgIMnElDyMd3vffQ42HPWhG3wbX2ouEsEl5yKNKRxTpe9C8Nbp3teN8V8aQZ_k6VGejvL0SZ6GyPCRCTHb7q3_u_w_9At9JnDN</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Malakzadeh, Abdollah</creator><creator>Pashaie, Rasoul</creator><creator>Mansoursamaei, Mohsen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4864-2697</orcidid></search><sort><creationdate>20200201</creationdate><title>Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs</title><author>Malakzadeh, Abdollah ; Pashaie, Rasoul ; Mansoursamaei, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-41f3071427e0a85c921381afbb5afba18b3d59caef7eadc2f1fabfe03c50a0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplifiers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Doped fibers</topic><topic>Electrical Engineering</topic><topic>Erbium</topic><topic>Lasers</topic><topic>Noise</topic><topic>Optical Devices</topic><topic>Optical fibers</topic><topic>Optical pumping</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pumps</topic><topic>Quality of service</topic><topic>Rayleigh scattering</topic><topic>Spontaneous emission</topic><topic>Test methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malakzadeh, Abdollah</creatorcontrib><creatorcontrib>Pashaie, Rasoul</creatorcontrib><creatorcontrib>Mansoursamaei, Mohsen</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malakzadeh, Abdollah</au><au>Pashaie, Rasoul</au><au>Mansoursamaei, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><artnum>75</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Erbium-doped fiber amplifier (EDFA) is widely recognized as one of the most important optical amplifiers in distributed optical fiber sensors which has been able to compensate the loss of the optical power. The 980 nm and 1480 nm are the most efficient pumps for amplifying the 1550 nm signal in EDFA. This paper presented an investigation for influences of pump power, signal power and EDF length on the gain and noise figure in an EDFA which pumped by 980 nm and 1480 nm pumps. It is also a comparison for each of the created gain and noise figure at the forward, backward, and bi-directional pumping configurations, separately. The effects of Rayleigh scattering, temperature, homogeneous interactions between Erbium ions and the amplified spontaneous emission are considered. As a result, Bi-directional pumping shows the highest gain value, and forward pumping presents the lowest noise figure for each pump. Moreover, backward pumping creates the highest noise figure and forward pumping generated the lowest gain value. The gain of 980 nm pump is higher than 1480 nm up to 5-m EDF length and for longer lengths, it becomes vice versa. The 980 nm pump caused a lower noise figure than 1480 nm for EDF length up to 10 m and it becomes vice versa for longer lengths.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-2186-0</doi><orcidid>https://orcid.org/0000-0003-4864-2697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2020-02, Vol.52 (2), Article 75
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2343272235
source SpringerLink Journals - AutoHoldings
subjects Amplifiers
Characterization and Evaluation of Materials
Computer Communication Networks
Doped fibers
Electrical Engineering
Erbium
Lasers
Noise
Optical Devices
Optical fibers
Optical pumping
Optics
Photonics
Physics
Physics and Astronomy
Pumps
Quality of service
Rayleigh scattering
Spontaneous emission
Test methods
title Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain%20and%20noise%20figure%20performance%20of%20an%20EDFA%20pumped%20at%20980%C2%A0nm%20or%201480%C2%A0nm%20for%20DOFSs&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Malakzadeh,%20Abdollah&rft.date=2020-02-01&rft.volume=52&rft.issue=2&rft.artnum=75&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-2186-0&rft_dat=%3Cproquest_cross%3E2343272235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343272235&rft_id=info:pmid/&rfr_iscdi=true