Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I
We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2016-02, Vol.17 (2), p.437-458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 2 |
container_start_page | 437 |
container_title | Annales Henri Poincaré |
container_volume | 17 |
creator | Disertori, Margherita Sodin, Sasha |
description | We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal. |
doi_str_mv | 10.1007/s00023-015-0397-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343271049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343271049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH03iZVXxqNTCokViZzmODa7SpHhSqf17UopgxWpmcc_VzCHkmsMtB8jvEACEZMBHDKTO2e6EDLgSikGW8dPfXebn5AJxBcBFIfWAvC38OrJJbRGjszUdN7beY0TaBvrcNmzh68DG1aqNTUeXyTYYfKJz26XoPNLY0EVnu4jdNz337sM20SGdXpKzYGv0Vz9zSF4f7peTJzZ7eZxOxjPmlNAdk0V_dlCudFlpXVC8EFDlvLCuhFEFkhc6k85pa50Y5UVWVllVlb4_35dK6yCH5ObYu0nt59ZjZ1btNvVfoBFSSZFzULpP8WPKpRYx-WA2Ka5t2hsO5iDQHAWaXqA5CDS7nhFHBvts8-7TX_P_0Be-lHOK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343271049</pqid></control><display><type>article</type><title>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</title><source>SpringerNature Journals</source><creator>Disertori, Margherita ; Sodin, Sasha</creator><creatorcontrib>Disertori, Margherita ; Sodin, Sasha</creatorcontrib><description>We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-015-0397-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Operators (mathematics) ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Statistical mechanics ; Theoretical ; Transfer matrices</subject><ispartof>Annales Henri Poincaré, 2016-02, Vol.17 (2), p.437-458</ispartof><rights>Springer Basel 2015</rights><rights>2015© Springer Basel 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</citedby><cites>FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-015-0397-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-015-0397-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Disertori, Margherita</creatorcontrib><creatorcontrib>Sodin, Sasha</creatorcontrib><title>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.</description><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Operators (mathematics)</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Statistical mechanics</subject><subject>Theoretical</subject><subject>Transfer matrices</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH03iZVXxqNTCokViZzmODa7SpHhSqf17UopgxWpmcc_VzCHkmsMtB8jvEACEZMBHDKTO2e6EDLgSikGW8dPfXebn5AJxBcBFIfWAvC38OrJJbRGjszUdN7beY0TaBvrcNmzh68DG1aqNTUeXyTYYfKJz26XoPNLY0EVnu4jdNz337sM20SGdXpKzYGv0Vz9zSF4f7peTJzZ7eZxOxjPmlNAdk0V_dlCudFlpXVC8EFDlvLCuhFEFkhc6k85pa50Y5UVWVllVlb4_35dK6yCH5ObYu0nt59ZjZ1btNvVfoBFSSZFzULpP8WPKpRYx-WA2Ka5t2hsO5iDQHAWaXqA5CDS7nhFHBvts8-7TX_P_0Be-lHOK</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Disertori, Margherita</creator><creator>Sodin, Sasha</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160201</creationdate><title>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</title><author>Disertori, Margherita ; Sodin, Sasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Operators (mathematics)</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Statistical mechanics</topic><topic>Theoretical</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disertori, Margherita</creatorcontrib><creatorcontrib>Sodin, Sasha</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disertori, Margherita</au><au>Sodin, Sasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>17</volume><issue>2</issue><spage>437</spage><epage>458</epage><pages>437-458</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-015-0397-x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2016-02, Vol.17 (2), p.437-458 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_proquest_journals_2343271049 |
source | SpringerNature Journals |
subjects | Classical and Quantum Gravitation Dynamical Systems and Ergodic Theory Elementary Particles Mathematical and Computational Physics Mathematical Methods in Physics Operators (mathematics) Perturbation Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Statistical mechanics Theoretical Transfer matrices |
title | Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Classical%20Analysis%20of%20Non-Self-Adjoint%20Transfer%20Matrices%20in%20Statistical%20Mechanics%20I&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Disertori,%20Margherita&rft.date=2016-02-01&rft.volume=17&rft.issue=2&rft.spage=437&rft.epage=458&rft.pages=437-458&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-015-0397-x&rft_dat=%3Cproquest_cross%3E2343271049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343271049&rft_id=info:pmid/&rfr_iscdi=true |