Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I

We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2016-02, Vol.17 (2), p.437-458
Hauptverfasser: Disertori, Margherita, Sodin, Sasha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 437
container_title Annales Henri Poincaré
container_volume 17
creator Disertori, Margherita
Sodin, Sasha
description We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.
doi_str_mv 10.1007/s00023-015-0397-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343271049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343271049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH03iZVXxqNTCokViZzmODa7SpHhSqf17UopgxWpmcc_VzCHkmsMtB8jvEACEZMBHDKTO2e6EDLgSikGW8dPfXebn5AJxBcBFIfWAvC38OrJJbRGjszUdN7beY0TaBvrcNmzh68DG1aqNTUeXyTYYfKJz26XoPNLY0EVnu4jdNz337sM20SGdXpKzYGv0Vz9zSF4f7peTJzZ7eZxOxjPmlNAdk0V_dlCudFlpXVC8EFDlvLCuhFEFkhc6k85pa50Y5UVWVllVlb4_35dK6yCH5ObYu0nt59ZjZ1btNvVfoBFSSZFzULpP8WPKpRYx-WA2Ka5t2hsO5iDQHAWaXqA5CDS7nhFHBvts8-7TX_P_0Be-lHOK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343271049</pqid></control><display><type>article</type><title>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</title><source>SpringerNature Journals</source><creator>Disertori, Margherita ; Sodin, Sasha</creator><creatorcontrib>Disertori, Margherita ; Sodin, Sasha</creatorcontrib><description>We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-015-0397-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Operators (mathematics) ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Statistical mechanics ; Theoretical ; Transfer matrices</subject><ispartof>Annales Henri Poincaré, 2016-02, Vol.17 (2), p.437-458</ispartof><rights>Springer Basel 2015</rights><rights>2015© Springer Basel 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</citedby><cites>FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-015-0397-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-015-0397-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Disertori, Margherita</creatorcontrib><creatorcontrib>Sodin, Sasha</creatorcontrib><title>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.</description><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Operators (mathematics)</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Statistical mechanics</subject><subject>Theoretical</subject><subject>Transfer matrices</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH03iZVXxqNTCokViZzmODa7SpHhSqf17UopgxWpmcc_VzCHkmsMtB8jvEACEZMBHDKTO2e6EDLgSikGW8dPfXebn5AJxBcBFIfWAvC38OrJJbRGjszUdN7beY0TaBvrcNmzh68DG1aqNTUeXyTYYfKJz26XoPNLY0EVnu4jdNz337sM20SGdXpKzYGv0Vz9zSF4f7peTJzZ7eZxOxjPmlNAdk0V_dlCudFlpXVC8EFDlvLCuhFEFkhc6k85pa50Y5UVWVllVlb4_35dK6yCH5ObYu0nt59ZjZ1btNvVfoBFSSZFzULpP8WPKpRYx-WA2Ka5t2hsO5iDQHAWaXqA5CDS7nhFHBvts8-7TX_P_0Be-lHOK</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Disertori, Margherita</creator><creator>Sodin, Sasha</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160201</creationdate><title>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</title><author>Disertori, Margherita ; Sodin, Sasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-38023f4cbc6bacf41820d718acb05d0318963cc9aac25786bd6ddbe012eb499f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Operators (mathematics)</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Statistical mechanics</topic><topic>Theoretical</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disertori, Margherita</creatorcontrib><creatorcontrib>Sodin, Sasha</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disertori, Margherita</au><au>Sodin, Sasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>17</volume><issue>2</issue><spage>437</spage><epage>458</epage><pages>437-458</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is a perturbation of a normal one. Then the transfer operator is studied using methods of semi-classical analysis. In this paper, we concentrate on the second step, the main technical result being a semi-classical estimate for powers of an integral operator which is approximately normal.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-015-0397-x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2016-02, Vol.17 (2), p.437-458
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2343271049
source SpringerNature Journals
subjects Classical and Quantum Gravitation
Dynamical Systems and Ergodic Theory
Elementary Particles
Mathematical and Computational Physics
Mathematical Methods in Physics
Operators (mathematics)
Perturbation
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Statistical mechanics
Theoretical
Transfer matrices
title Semi-Classical Analysis of Non-Self-Adjoint Transfer Matrices in Statistical Mechanics I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Classical%20Analysis%20of%20Non-Self-Adjoint%20Transfer%20Matrices%20in%20Statistical%20Mechanics%20I&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Disertori,%20Margherita&rft.date=2016-02-01&rft.volume=17&rft.issue=2&rft.spage=437&rft.epage=458&rft.pages=437-458&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-015-0397-x&rft_dat=%3Cproquest_cross%3E2343271049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343271049&rft_id=info:pmid/&rfr_iscdi=true