Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity

[Display omitted] •Active, selective, stable and fine-tunable mixed oxide photocatalysts prepared.•Photocatalytic DeNOx performance of photocatalysts surpassed P25 titania benchmark.•Interplay between specific surface area, surface acidity and humidity was elucidated.•Mechanistic insights on the ori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-04, Vol.263, p.118227, Article 118227
Hauptverfasser: Çağlayan, Mustafa, Irfan, Muhammad, Ercan, Kerem Emre, Kocak, Yusuf, Ozensoy, Emrah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118227
container_title Applied catalysis. B, Environmental
container_volume 263
creator Çağlayan, Mustafa
Irfan, Muhammad
Ercan, Kerem Emre
Kocak, Yusuf
Ozensoy, Emrah
description [Display omitted] •Active, selective, stable and fine-tunable mixed oxide photocatalysts prepared.•Photocatalytic DeNOx performance of photocatalysts surpassed P25 titania benchmark.•Interplay between specific surface area, surface acidity and humidity was elucidated.•Mechanistic insights on the origin of reactivity, selectivity and deactivation provided.•This versatile catalytic architecture can also be scaled-up for mass production. In this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO2, P25), alumina (γ-Al2O3) and calcium oxide (CaO) functioning as efficient photocatalytic NOx oxidation and storage (PHONOS) catalysts that are capable of facile NOx abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al2O3 provided NOx storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.
doi_str_mv 10.1016/j.apcatb.2019.118227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343105477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319309749</els_id><sourcerecordid>2343105477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6cb7344f2b29bd338df25ddd42d24a7e1fcb59fbe74d3fb9b9dc55500378f4a53</originalsourceid><addsrcrecordid>eNp9kc1uFDEQhEeISCyBN-BgiWtm8c_MeoYDEooCRIrIJTlbbbvNerVjD7Y3yT4U7xgvE3Hk0OpDV1Wr9DXNB0bXjLLNp90aZgNFrzll45qxgXP5qlmxQYpWDIN43azoyDetEFK8ad7mvKOUcsGHVfPnKmwhGJwwFBIdmbexxJoF-2Pxhvy8fSKgobzcAym-QPBAHuqAtb74GGBPJqwOEp-8xZOnzSUm-IXExgl8yJ_JdSiY5j0cicbyiBhIPiQHBgkYX2OOFyTPaLyrT_9dEsIFgWDJ9jD9Fb1rzhzsM75_2efN_beru8sf7c3t9-vLrzetEZKVdmO0FF3nuOajtkIM1vHeWttxyzuQyJzR_eg0ys4Kp0c9WtP3PaVCDq6DXpw3H5fcOcXfB8xF7eIh1aJZcdEJRvtOyqrqFpVJMeeETs3JT5COilF1AqN2agGjTmDUAqbaviw2rA0ePCaVjcfKwPqEpigb_f8DngG3JJzB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343105477</pqid></control><display><type>article</type><title>Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Çağlayan, Mustafa ; Irfan, Muhammad ; Ercan, Kerem Emre ; Kocak, Yusuf ; Ozensoy, Emrah</creator><creatorcontrib>Çağlayan, Mustafa ; Irfan, Muhammad ; Ercan, Kerem Emre ; Kocak, Yusuf ; Ozensoy, Emrah</creatorcontrib><description>[Display omitted] •Active, selective, stable and fine-tunable mixed oxide photocatalysts prepared.•Photocatalytic DeNOx performance of photocatalysts surpassed P25 titania benchmark.•Interplay between specific surface area, surface acidity and humidity was elucidated.•Mechanistic insights on the origin of reactivity, selectivity and deactivation provided.•This versatile catalytic architecture can also be scaled-up for mass production. In this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO2, P25), alumina (γ-Al2O3) and calcium oxide (CaO) functioning as efficient photocatalytic NOx oxidation and storage (PHONOS) catalysts that are capable of facile NOx abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al2O3 provided NOx storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.118227</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acidity ; Alumina ; Aluminum oxide ; Calcium ; Calcium oxide ; Catalysts ; Catalytic activity ; Deactivation ; DeNOx catalysts ; Domains ; High temperature ; Humidity ; Irradiation ; Lime ; Metal oxides ; Mixed oxides ; Nitrogen oxides ; NOx abatement ; Oxidation ; Oxides ; Photocatalysis ; Photocatalytic NOx oxidation-storage (PHONOS) ; Selectivity ; Specific humidity ; Specific surface ; Storage ; Titania ; Titanium dioxide ; Transitional aluminas ; Ultraviolet radiation</subject><ispartof>Applied catalysis. B, Environmental, 2020-04, Vol.263, p.118227, Article 118227</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6cb7344f2b29bd338df25ddd42d24a7e1fcb59fbe74d3fb9b9dc55500378f4a53</citedby><cites>FETCH-LOGICAL-c371t-6cb7344f2b29bd338df25ddd42d24a7e1fcb59fbe74d3fb9b9dc55500378f4a53</cites><orcidid>0000-0003-4511-1321 ; 0000-0003-4650-7977 ; 0000-0003-4352-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2019.118227$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Çağlayan, Mustafa</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Ercan, Kerem Emre</creatorcontrib><creatorcontrib>Kocak, Yusuf</creatorcontrib><creatorcontrib>Ozensoy, Emrah</creatorcontrib><title>Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Active, selective, stable and fine-tunable mixed oxide photocatalysts prepared.•Photocatalytic DeNOx performance of photocatalysts surpassed P25 titania benchmark.•Interplay between specific surface area, surface acidity and humidity was elucidated.•Mechanistic insights on the origin of reactivity, selectivity and deactivation provided.•This versatile catalytic architecture can also be scaled-up for mass production. In this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO2, P25), alumina (γ-Al2O3) and calcium oxide (CaO) functioning as efficient photocatalytic NOx oxidation and storage (PHONOS) catalysts that are capable of facile NOx abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al2O3 provided NOx storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.</description><subject>Acidity</subject><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Calcium</subject><subject>Calcium oxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Deactivation</subject><subject>DeNOx catalysts</subject><subject>Domains</subject><subject>High temperature</subject><subject>Humidity</subject><subject>Irradiation</subject><subject>Lime</subject><subject>Metal oxides</subject><subject>Mixed oxides</subject><subject>Nitrogen oxides</subject><subject>NOx abatement</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Photocatalysis</subject><subject>Photocatalytic NOx oxidation-storage (PHONOS)</subject><subject>Selectivity</subject><subject>Specific humidity</subject><subject>Specific surface</subject><subject>Storage</subject><subject>Titania</subject><subject>Titanium dioxide</subject><subject>Transitional aluminas</subject><subject>Ultraviolet radiation</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uFDEQhEeISCyBN-BgiWtm8c_MeoYDEooCRIrIJTlbbbvNerVjD7Y3yT4U7xgvE3Hk0OpDV1Wr9DXNB0bXjLLNp90aZgNFrzll45qxgXP5qlmxQYpWDIN43azoyDetEFK8ad7mvKOUcsGHVfPnKmwhGJwwFBIdmbexxJoF-2Pxhvy8fSKgobzcAym-QPBAHuqAtb74GGBPJqwOEp-8xZOnzSUm-IXExgl8yJ_JdSiY5j0cicbyiBhIPiQHBgkYX2OOFyTPaLyrT_9dEsIFgWDJ9jD9Fb1rzhzsM75_2efN_beru8sf7c3t9-vLrzetEZKVdmO0FF3nuOajtkIM1vHeWttxyzuQyJzR_eg0ys4Kp0c9WtP3PaVCDq6DXpw3H5fcOcXfB8xF7eIh1aJZcdEJRvtOyqrqFpVJMeeETs3JT5COilF1AqN2agGjTmDUAqbaviw2rA0ePCaVjcfKwPqEpigb_f8DngG3JJzB</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Çağlayan, Mustafa</creator><creator>Irfan, Muhammad</creator><creator>Ercan, Kerem Emre</creator><creator>Kocak, Yusuf</creator><creator>Ozensoy, Emrah</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4511-1321</orcidid><orcidid>https://orcid.org/0000-0003-4650-7977</orcidid><orcidid>https://orcid.org/0000-0003-4352-3824</orcidid></search><sort><creationdate>20200401</creationdate><title>Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity</title><author>Çağlayan, Mustafa ; Irfan, Muhammad ; Ercan, Kerem Emre ; Kocak, Yusuf ; Ozensoy, Emrah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6cb7344f2b29bd338df25ddd42d24a7e1fcb59fbe74d3fb9b9dc55500378f4a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acidity</topic><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Calcium</topic><topic>Calcium oxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Deactivation</topic><topic>DeNOx catalysts</topic><topic>Domains</topic><topic>High temperature</topic><topic>Humidity</topic><topic>Irradiation</topic><topic>Lime</topic><topic>Metal oxides</topic><topic>Mixed oxides</topic><topic>Nitrogen oxides</topic><topic>NOx abatement</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Photocatalysis</topic><topic>Photocatalytic NOx oxidation-storage (PHONOS)</topic><topic>Selectivity</topic><topic>Specific humidity</topic><topic>Specific surface</topic><topic>Storage</topic><topic>Titania</topic><topic>Titanium dioxide</topic><topic>Transitional aluminas</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çağlayan, Mustafa</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Ercan, Kerem Emre</creatorcontrib><creatorcontrib>Kocak, Yusuf</creatorcontrib><creatorcontrib>Ozensoy, Emrah</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çağlayan, Mustafa</au><au>Irfan, Muhammad</au><au>Ercan, Kerem Emre</au><au>Kocak, Yusuf</au><au>Ozensoy, Emrah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>263</volume><spage>118227</spage><pages>118227-</pages><artnum>118227</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Active, selective, stable and fine-tunable mixed oxide photocatalysts prepared.•Photocatalytic DeNOx performance of photocatalysts surpassed P25 titania benchmark.•Interplay between specific surface area, surface acidity and humidity was elucidated.•Mechanistic insights on the origin of reactivity, selectivity and deactivation provided.•This versatile catalytic architecture can also be scaled-up for mass production. In this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO2, P25), alumina (γ-Al2O3) and calcium oxide (CaO) functioning as efficient photocatalytic NOx oxidation and storage (PHONOS) catalysts that are capable of facile NOx abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al2O3 provided NOx storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.118227</doi><orcidid>https://orcid.org/0000-0003-4511-1321</orcidid><orcidid>https://orcid.org/0000-0003-4650-7977</orcidid><orcidid>https://orcid.org/0000-0003-4352-3824</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-04, Vol.263, p.118227, Article 118227
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2343105477
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Acidity
Alumina
Aluminum oxide
Calcium
Calcium oxide
Catalysts
Catalytic activity
Deactivation
DeNOx catalysts
Domains
High temperature
Humidity
Irradiation
Lime
Metal oxides
Mixed oxides
Nitrogen oxides
NOx abatement
Oxidation
Oxides
Photocatalysis
Photocatalytic NOx oxidation-storage (PHONOS)
Selectivity
Specific humidity
Specific surface
Storage
Titania
Titanium dioxide
Transitional aluminas
Ultraviolet radiation
title Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20photocatalytic%20NOx%20abatement%20on%20titania%20via%20additional%20metal%20oxide%20NOx-storage%20domains:%20Interplay%20between%20surface%20acidity,%20specific%20surface%20area,%20and%20humidity&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=%C3%87a%C4%9Flayan,%20Mustafa&rft.date=2020-04-01&rft.volume=263&rft.spage=118227&rft.pages=118227-&rft.artnum=118227&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.118227&rft_dat=%3Cproquest_cross%3E2343105477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343105477&rft_id=info:pmid/&rft_els_id=S0926337319309749&rfr_iscdi=true