Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 °C

[Display omitted] •Pd, Ru, and Cu are studied as secondary fuel catalysts of solid oxide fuel cell.•Fuel flexibility of low-temperature solid oxide fuel cell (LT-SOFC) is studied.•Butane direct internal stream reforming (DISR) of LT-SOFC at 5–600 °C is assessed.•With Ru, 973 mW cm−2 peak power at 60...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-04, Vol.263, p.118349, Article 118349
Hauptverfasser: Thieu, Cam-Anh, Yang, Sungeun, Ji, Ho-Il, Kim, Hyoungchul, Yoon, Kyung Joong, Lee, Jong-Ho, Son, Ji-Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118349
container_title Applied catalysis. B, Environmental
container_volume 263
creator Thieu, Cam-Anh
Yang, Sungeun
Ji, Ho-Il
Kim, Hyoungchul
Yoon, Kyung Joong
Lee, Jong-Ho
Son, Ji-Won
description [Display omitted] •Pd, Ru, and Cu are studied as secondary fuel catalysts of solid oxide fuel cell.•Fuel flexibility of low-temperature solid oxide fuel cell (LT-SOFC) is studied.•Butane direct internal stream reforming (DISR) of LT-SOFC at 5–600 °C is assessed.•With Ru, 973 mW cm−2 peak power at 600 °C was achieved (∼100 % C4H10 conversion).•Cu-cell yielded comparable peak power as that of Ru-cell at 500 °C, 310 mW cm−2. Pd, Ru, and Cu secondary catalysts were incorporated into the nickel-yttria-stabilized zirconia nanostructured-anode functional layer (nano-AFL) of solid oxide fuel cells (SOFCs) by a combination of pulsed-laser-deposition and sputtering. The activity of these catalysts for direct internal steam reforming (DISR) of n-butane at the SOFC unit cell level were investigated at low temperatures (500–600 °C) by comparing the electrochemical performance among the Ref-cell (the cell without catalyst at the nano-AFL) and Pd-, Ru-, and Cu-cell (the cells with Pd-, Ru- and Cu- incorporated at the nano-AFL). The steam-to-carbon ratio (SCR) and the operating temperature were varied and the effect on DISR of n-butane in the Ref-, Pd-, Ru-, and Cu-cell were systematically studied. Secondary catalyst incorporation appears to enhance the electrochemical reaction and thermochemical reactions, such as steam reforming and water-gas-shift reactions, which results in the cell performance improvement at all tested conditions in comparison with that of the Ref-cell.
doi_str_mv 10.1016/j.apcatb.2019.118349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343105418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319310951</els_id><sourcerecordid>2343105418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-2039b61ef040190d5521350509627f2ab92fbb5b2f205bf6afe35600ff1d0a743</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAxaWWKeM7ThNNkioKj9SJTawtpxkDK6SuNgugh0bTsBFOANH4SS4CmtWs5j53uh7hJwymDFgxfl6pjeNjvWMA6tmjJUir_bIhJVzkYmyFPtkAhUvMiHm4pAchbAGAC54OSEfS2OwidQZGrBxQ6v9G-0x6o4mou7eQgzUDbTeRj0gtUNEP6RliKh76tE439vhkboNeh1tukyk-GSHzNiup8F1tqXu1bZIzRYTFLsuUB2pBPh5_ywA6PfX4pgcGN0FPPmbU_Jwtbxf3GSru-vbxeUqa3hZxIyDqOqCoYE8FYVWSs6EBAlVweeG67ripq5lzQ0HWZtCGxQyvTCGtaDnuZiSs5G78e55iyGqtdvu-gTFRS4YyDzJm5J8vGq8CyF1VBtv-yRGMVA74WqtRuFqJ1yNwlPsYoxhavBi0avQWBwabK1PilXr7P-AXwfnjGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343105418</pqid></control><display><type>article</type><title>Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 °C</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Thieu, Cam-Anh ; Yang, Sungeun ; Ji, Ho-Il ; Kim, Hyoungchul ; Yoon, Kyung Joong ; Lee, Jong-Ho ; Son, Ji-Won</creator><creatorcontrib>Thieu, Cam-Anh ; Yang, Sungeun ; Ji, Ho-Il ; Kim, Hyoungchul ; Yoon, Kyung Joong ; Lee, Jong-Ho ; Son, Ji-Won</creatorcontrib><description>[Display omitted] •Pd, Ru, and Cu are studied as secondary fuel catalysts of solid oxide fuel cell.•Fuel flexibility of low-temperature solid oxide fuel cell (LT-SOFC) is studied.•Butane direct internal stream reforming (DISR) of LT-SOFC at 5–600 °C is assessed.•With Ru, 973 mW cm−2 peak power at 600 °C was achieved (∼100 % C4H10 conversion).•Cu-cell yielded comparable peak power as that of Ru-cell at 500 °C, 310 mW cm−2. Pd, Ru, and Cu secondary catalysts were incorporated into the nickel-yttria-stabilized zirconia nanostructured-anode functional layer (nano-AFL) of solid oxide fuel cells (SOFCs) by a combination of pulsed-laser-deposition and sputtering. The activity of these catalysts for direct internal steam reforming (DISR) of n-butane at the SOFC unit cell level were investigated at low temperatures (500–600 °C) by comparing the electrochemical performance among the Ref-cell (the cell without catalyst at the nano-AFL) and Pd-, Ru-, and Cu-cell (the cells with Pd-, Ru- and Cu- incorporated at the nano-AFL). The steam-to-carbon ratio (SCR) and the operating temperature were varied and the effect on DISR of n-butane in the Ref-, Pd-, Ru-, and Cu-cell were systematically studied. Secondary catalyst incorporation appears to enhance the electrochemical reaction and thermochemical reactions, such as steam reforming and water-gas-shift reactions, which results in the cell performance improvement at all tested conditions in comparison with that of the Ref-cell.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.118349</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Butane ; Catalysts ; Chemical reactions ; Copper ; Direct internal steam reforming of n-butane ; Electrochemical analysis ; Electrochemistry ; Electrons ; Fuel cells ; Fuel flexibility ; Fuel technology ; Low temperature ; Multiscale-architectured thin-film-based solid oxide fuel cells ; Nickel ; Operating temperature ; Palladium ; Pulsed lasers ; Reforming ; Ruthenium ; Secondary metal catalyst ; Solid oxide fuel cells ; Sputtering deposition ; Steam ; Thin films ; Unit cell ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconia ; Zirconium dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2020-04, Vol.263, p.118349, Article 118349</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-2039b61ef040190d5521350509627f2ab92fbb5b2f205bf6afe35600ff1d0a743</citedby><cites>FETCH-LOGICAL-c286t-2039b61ef040190d5521350509627f2ab92fbb5b2f205bf6afe35600ff1d0a743</cites><orcidid>0000-0003-3109-660X ; 0000-0002-5310-0633 ; 0000-0002-4161-5111 ; 0000-0002-6194-991X ; 0000-0001-7940-7791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2019.118349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Thieu, Cam-Anh</creatorcontrib><creatorcontrib>Yang, Sungeun</creatorcontrib><creatorcontrib>Ji, Ho-Il</creatorcontrib><creatorcontrib>Kim, Hyoungchul</creatorcontrib><creatorcontrib>Yoon, Kyung Joong</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Son, Ji-Won</creatorcontrib><title>Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 °C</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Pd, Ru, and Cu are studied as secondary fuel catalysts of solid oxide fuel cell.•Fuel flexibility of low-temperature solid oxide fuel cell (LT-SOFC) is studied.•Butane direct internal stream reforming (DISR) of LT-SOFC at 5–600 °C is assessed.•With Ru, 973 mW cm−2 peak power at 600 °C was achieved (∼100 % C4H10 conversion).•Cu-cell yielded comparable peak power as that of Ru-cell at 500 °C, 310 mW cm−2. Pd, Ru, and Cu secondary catalysts were incorporated into the nickel-yttria-stabilized zirconia nanostructured-anode functional layer (nano-AFL) of solid oxide fuel cells (SOFCs) by a combination of pulsed-laser-deposition and sputtering. The activity of these catalysts for direct internal steam reforming (DISR) of n-butane at the SOFC unit cell level were investigated at low temperatures (500–600 °C) by comparing the electrochemical performance among the Ref-cell (the cell without catalyst at the nano-AFL) and Pd-, Ru-, and Cu-cell (the cells with Pd-, Ru- and Cu- incorporated at the nano-AFL). The steam-to-carbon ratio (SCR) and the operating temperature were varied and the effect on DISR of n-butane in the Ref-, Pd-, Ru-, and Cu-cell were systematically studied. Secondary catalyst incorporation appears to enhance the electrochemical reaction and thermochemical reactions, such as steam reforming and water-gas-shift reactions, which results in the cell performance improvement at all tested conditions in comparison with that of the Ref-cell.</description><subject>Butane</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Direct internal steam reforming of n-butane</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrons</subject><subject>Fuel cells</subject><subject>Fuel flexibility</subject><subject>Fuel technology</subject><subject>Low temperature</subject><subject>Multiscale-architectured thin-film-based solid oxide fuel cells</subject><subject>Nickel</subject><subject>Operating temperature</subject><subject>Palladium</subject><subject>Pulsed lasers</subject><subject>Reforming</subject><subject>Ruthenium</subject><subject>Secondary metal catalyst</subject><subject>Solid oxide fuel cells</subject><subject>Sputtering deposition</subject><subject>Steam</subject><subject>Thin films</subject><subject>Unit cell</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconia</subject><subject>Zirconium dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAxaWWKeM7ThNNkioKj9SJTawtpxkDK6SuNgugh0bTsBFOANH4SS4CmtWs5j53uh7hJwymDFgxfl6pjeNjvWMA6tmjJUir_bIhJVzkYmyFPtkAhUvMiHm4pAchbAGAC54OSEfS2OwidQZGrBxQ6v9G-0x6o4mou7eQgzUDbTeRj0gtUNEP6RliKh76tE439vhkboNeh1tukyk-GSHzNiup8F1tqXu1bZIzRYTFLsuUB2pBPh5_ywA6PfX4pgcGN0FPPmbU_Jwtbxf3GSru-vbxeUqa3hZxIyDqOqCoYE8FYVWSs6EBAlVweeG67ripq5lzQ0HWZtCGxQyvTCGtaDnuZiSs5G78e55iyGqtdvu-gTFRS4YyDzJm5J8vGq8CyF1VBtv-yRGMVA74WqtRuFqJ1yNwlPsYoxhavBi0avQWBwabK1PilXr7P-AXwfnjGU</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Thieu, Cam-Anh</creator><creator>Yang, Sungeun</creator><creator>Ji, Ho-Il</creator><creator>Kim, Hyoungchul</creator><creator>Yoon, Kyung Joong</creator><creator>Lee, Jong-Ho</creator><creator>Son, Ji-Won</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3109-660X</orcidid><orcidid>https://orcid.org/0000-0002-5310-0633</orcidid><orcidid>https://orcid.org/0000-0002-4161-5111</orcidid><orcidid>https://orcid.org/0000-0002-6194-991X</orcidid><orcidid>https://orcid.org/0000-0001-7940-7791</orcidid></search><sort><creationdate>20200401</creationdate><title>Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 °C</title><author>Thieu, Cam-Anh ; Yang, Sungeun ; Ji, Ho-Il ; Kim, Hyoungchul ; Yoon, Kyung Joong ; Lee, Jong-Ho ; Son, Ji-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-2039b61ef040190d5521350509627f2ab92fbb5b2f205bf6afe35600ff1d0a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Butane</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Direct internal steam reforming of n-butane</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrons</topic><topic>Fuel cells</topic><topic>Fuel flexibility</topic><topic>Fuel technology</topic><topic>Low temperature</topic><topic>Multiscale-architectured thin-film-based solid oxide fuel cells</topic><topic>Nickel</topic><topic>Operating temperature</topic><topic>Palladium</topic><topic>Pulsed lasers</topic><topic>Reforming</topic><topic>Ruthenium</topic><topic>Secondary metal catalyst</topic><topic>Solid oxide fuel cells</topic><topic>Sputtering deposition</topic><topic>Steam</topic><topic>Thin films</topic><topic>Unit cell</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thieu, Cam-Anh</creatorcontrib><creatorcontrib>Yang, Sungeun</creatorcontrib><creatorcontrib>Ji, Ho-Il</creatorcontrib><creatorcontrib>Kim, Hyoungchul</creatorcontrib><creatorcontrib>Yoon, Kyung Joong</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Son, Ji-Won</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thieu, Cam-Anh</au><au>Yang, Sungeun</au><au>Ji, Ho-Il</au><au>Kim, Hyoungchul</au><au>Yoon, Kyung Joong</au><au>Lee, Jong-Ho</au><au>Son, Ji-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 °C</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>263</volume><spage>118349</spage><pages>118349-</pages><artnum>118349</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Pd, Ru, and Cu are studied as secondary fuel catalysts of solid oxide fuel cell.•Fuel flexibility of low-temperature solid oxide fuel cell (LT-SOFC) is studied.•Butane direct internal stream reforming (DISR) of LT-SOFC at 5–600 °C is assessed.•With Ru, 973 mW cm−2 peak power at 600 °C was achieved (∼100 % C4H10 conversion).•Cu-cell yielded comparable peak power as that of Ru-cell at 500 °C, 310 mW cm−2. Pd, Ru, and Cu secondary catalysts were incorporated into the nickel-yttria-stabilized zirconia nanostructured-anode functional layer (nano-AFL) of solid oxide fuel cells (SOFCs) by a combination of pulsed-laser-deposition and sputtering. The activity of these catalysts for direct internal steam reforming (DISR) of n-butane at the SOFC unit cell level were investigated at low temperatures (500–600 °C) by comparing the electrochemical performance among the Ref-cell (the cell without catalyst at the nano-AFL) and Pd-, Ru-, and Cu-cell (the cells with Pd-, Ru- and Cu- incorporated at the nano-AFL). The steam-to-carbon ratio (SCR) and the operating temperature were varied and the effect on DISR of n-butane in the Ref-, Pd-, Ru-, and Cu-cell were systematically studied. Secondary catalyst incorporation appears to enhance the electrochemical reaction and thermochemical reactions, such as steam reforming and water-gas-shift reactions, which results in the cell performance improvement at all tested conditions in comparison with that of the Ref-cell.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.118349</doi><orcidid>https://orcid.org/0000-0003-3109-660X</orcidid><orcidid>https://orcid.org/0000-0002-5310-0633</orcidid><orcidid>https://orcid.org/0000-0002-4161-5111</orcidid><orcidid>https://orcid.org/0000-0002-6194-991X</orcidid><orcidid>https://orcid.org/0000-0001-7940-7791</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-04, Vol.263, p.118349, Article 118349
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2343105418
source Elsevier ScienceDirect Journals Complete
subjects Butane
Catalysts
Chemical reactions
Copper
Direct internal steam reforming of n-butane
Electrochemical analysis
Electrochemistry
Electrons
Fuel cells
Fuel flexibility
Fuel technology
Low temperature
Multiscale-architectured thin-film-based solid oxide fuel cells
Nickel
Operating temperature
Palladium
Pulsed lasers
Reforming
Ruthenium
Secondary metal catalyst
Solid oxide fuel cells
Sputtering deposition
Steam
Thin films
Unit cell
Yttria-stabilized zirconia
Yttrium oxide
Zirconia
Zirconium dioxide
title Effect of secondary metal catalysts on butane internal steam reforming operation of thin-film solid oxide fuel cells at 500–600 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20secondary%20metal%20catalysts%20on%20butane%20internal%20steam%20reforming%20operation%20of%20thin-film%20solid%20oxide%20fuel%20cells%20at%20500%E2%80%93600%20%C2%B0C&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Thieu,%20Cam-Anh&rft.date=2020-04-01&rft.volume=263&rft.spage=118349&rft.pages=118349-&rft.artnum=118349&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.118349&rft_dat=%3Cproquest_cross%3E2343105418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343105418&rft_id=info:pmid/&rft_els_id=S0926337319310951&rfr_iscdi=true