Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime

Grid is an important factor in numerical simulation of hypersonic aerothermodynamics. This paper introduces three criteria for determining grid size in the transition flow regime when using the computational fluid dynamics (CFD) method or the direct simulation Monte Carlo (DSMC) method. The numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-12, Vol.881, p.585-601
Hauptverfasser: Ren, Xiang, Yuan, Junya, He, Bijiao, Zhang, Mingxing, Cai, Guobiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue
container_start_page 585
container_title Journal of fluid mechanics
container_volume 881
creator Ren, Xiang
Yuan, Junya
He, Bijiao
Zhang, Mingxing
Cai, Guobiao
description Grid is an important factor in numerical simulation of hypersonic aerothermodynamics. This paper introduces three criteria for determining grid size in the transition flow regime when using the computational fluid dynamics (CFD) method or the direct simulation Monte Carlo (DSMC) method. The numerical relationship between these three criteria sizes is deduced according to the one-dimensional fluid theory. Then, the relationship is verified using the CFD method to simulate the flow around a two-dimensional cylinder. At the same time, the dependence of simulation accuracy on grid size in the CFD and DSMC methods is studied and the mechanism is given. The result shows that the simulation accuracy of heat flux especially depends on the normal grid size next to surfaces, where the $Re_{\mathit{cell},w}$ criterion and the $\unicode[STIX]{x1D706}_{w}$ criterion based on local parameters are applicable and equivalent, while the $Re_{\mathit{cell},\infty }$ criterion based on the free-stream parameter is only applicable under the assumption of constant viscosity coefficient and constant temperature wall conditions. On the other hand, the trend of the heat flux changing with grid size obtained by CFD and DSMC is exactly the opposite. Therefore, the grid size must be strictly satisfied with the grid criteria when comparing CFD with DSMC and even the hybrid DSMC with Navier–Stokes method.
doi_str_mv 10.1017/jfm.2019.756
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2342457344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342457344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-42c0b2734067c8abca6dc066014335793dae2a288f1cedeec8f9dbd90fb217213</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqWw4wCW2JLy_JM4WaIKClIlNrBEluPY1FVjl-dk0dtwFk5GqrKaWXyakT5CbhksGDD1sPX9ggNrFqqszsiMyaopVCXLczID4LxgjMMlucp5C8AENGpGPlcYOmoxDA6DoT4hjWM_dWt2NId-3JkhpEiTp5vD3mFOMVhqHKZh47BP3SGaPthMQ6QDmpjDEf_9QfcVendNLrzZZXfzn3Py8fz0vnwp1m-r1-XjurCsEUMhuYWWKyGhUrY2rTVVZ6GqgEkhStWIzjhueF17Zl3nnK1907VdA77lTHEm5uTutLvH9D26POhtGjFOl5oLyWU5bcuJuj9RFlPO6LzeY-gNHjQDfRSoJ4H6KFBPAsUfIbFmhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342457344</pqid></control><display><type>article</type><title>Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime</title><source>Cambridge University Press Journals Complete</source><creator>Ren, Xiang ; Yuan, Junya ; He, Bijiao ; Zhang, Mingxing ; Cai, Guobiao</creator><creatorcontrib>Ren, Xiang ; Yuan, Junya ; He, Bijiao ; Zhang, Mingxing ; Cai, Guobiao</creatorcontrib><description>Grid is an important factor in numerical simulation of hypersonic aerothermodynamics. This paper introduces three criteria for determining grid size in the transition flow regime when using the computational fluid dynamics (CFD) method or the direct simulation Monte Carlo (DSMC) method. The numerical relationship between these three criteria sizes is deduced according to the one-dimensional fluid theory. Then, the relationship is verified using the CFD method to simulate the flow around a two-dimensional cylinder. At the same time, the dependence of simulation accuracy on grid size in the CFD and DSMC methods is studied and the mechanism is given. The result shows that the simulation accuracy of heat flux especially depends on the normal grid size next to surfaces, where the $Re_{\mathit{cell},w}$ criterion and the $\unicode[STIX]{x1D706}_{w}$ criterion based on local parameters are applicable and equivalent, while the $Re_{\mathit{cell},\infty }$ criterion based on the free-stream parameter is only applicable under the assumption of constant viscosity coefficient and constant temperature wall conditions. On the other hand, the trend of the heat flux changing with grid size obtained by CFD and DSMC is exactly the opposite. Therefore, the grid size must be strictly satisfied with the grid criteria when comparing CFD with DSMC and even the hybrid DSMC with Navier–Stokes method.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.756</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Accuracy ; Aerodynamics ; Aerothermodynamics ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Criteria ; Cylinders ; Direct simulation Monte Carlo method ; Flow simulation ; Fluid dynamics ; Heat ; Heat flux ; Heat transfer ; Hydrodynamics ; Mathematical models ; Methods ; Monte Carlo simulation ; Parameters ; Reynolds number ; Simulation ; Statistical methods ; Theory ; Time dependence ; Transition flow ; Two dimensional flow ; Viscosity ; Viscosity coefficient ; Viscosity coefficients</subject><ispartof>Journal of fluid mechanics, 2019-12, Vol.881, p.585-601</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c193t-42c0b2734067c8abca6dc066014335793dae2a288f1cedeec8f9dbd90fb217213</citedby><cites>FETCH-LOGICAL-c193t-42c0b2734067c8abca6dc066014335793dae2a288f1cedeec8f9dbd90fb217213</cites><orcidid>0000-0001-8045-0922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Yuan, Junya</creatorcontrib><creatorcontrib>He, Bijiao</creatorcontrib><creatorcontrib>Zhang, Mingxing</creatorcontrib><creatorcontrib>Cai, Guobiao</creatorcontrib><title>Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime</title><title>Journal of fluid mechanics</title><description>Grid is an important factor in numerical simulation of hypersonic aerothermodynamics. This paper introduces three criteria for determining grid size in the transition flow regime when using the computational fluid dynamics (CFD) method or the direct simulation Monte Carlo (DSMC) method. The numerical relationship between these three criteria sizes is deduced according to the one-dimensional fluid theory. Then, the relationship is verified using the CFD method to simulate the flow around a two-dimensional cylinder. At the same time, the dependence of simulation accuracy on grid size in the CFD and DSMC methods is studied and the mechanism is given. The result shows that the simulation accuracy of heat flux especially depends on the normal grid size next to surfaces, where the $Re_{\mathit{cell},w}$ criterion and the $\unicode[STIX]{x1D706}_{w}$ criterion based on local parameters are applicable and equivalent, while the $Re_{\mathit{cell},\infty }$ criterion based on the free-stream parameter is only applicable under the assumption of constant viscosity coefficient and constant temperature wall conditions. On the other hand, the trend of the heat flux changing with grid size obtained by CFD and DSMC is exactly the opposite. Therefore, the grid size must be strictly satisfied with the grid criteria when comparing CFD with DSMC and even the hybrid DSMC with Navier–Stokes method.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Aerothermodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Criteria</subject><subject>Cylinders</subject><subject>Direct simulation Monte Carlo method</subject><subject>Flow simulation</subject><subject>Fluid dynamics</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Theory</subject><subject>Time dependence</subject><subject>Transition flow</subject><subject>Two dimensional flow</subject><subject>Viscosity</subject><subject>Viscosity coefficient</subject><subject>Viscosity coefficients</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1OwzAUhC0EEqWw4wCW2JLy_JM4WaIKClIlNrBEluPY1FVjl-dk0dtwFk5GqrKaWXyakT5CbhksGDD1sPX9ggNrFqqszsiMyaopVCXLczID4LxgjMMlucp5C8AENGpGPlcYOmoxDA6DoT4hjWM_dWt2NId-3JkhpEiTp5vD3mFOMVhqHKZh47BP3SGaPthMQ6QDmpjDEf_9QfcVendNLrzZZXfzn3Py8fz0vnwp1m-r1-XjurCsEUMhuYWWKyGhUrY2rTVVZ6GqgEkhStWIzjhueF17Zl3nnK1907VdA77lTHEm5uTutLvH9D26POhtGjFOl5oLyWU5bcuJuj9RFlPO6LzeY-gNHjQDfRSoJ4H6KFBPAsUfIbFmhA</recordid><startdate>20191225</startdate><enddate>20191225</enddate><creator>Ren, Xiang</creator><creator>Yuan, Junya</creator><creator>He, Bijiao</creator><creator>Zhang, Mingxing</creator><creator>Cai, Guobiao</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8045-0922</orcidid></search><sort><creationdate>20191225</creationdate><title>Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime</title><author>Ren, Xiang ; Yuan, Junya ; He, Bijiao ; Zhang, Mingxing ; Cai, Guobiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-42c0b2734067c8abca6dc066014335793dae2a288f1cedeec8f9dbd90fb217213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Aerothermodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Criteria</topic><topic>Cylinders</topic><topic>Direct simulation Monte Carlo method</topic><topic>Flow simulation</topic><topic>Fluid dynamics</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Theory</topic><topic>Time dependence</topic><topic>Transition flow</topic><topic>Two dimensional flow</topic><topic>Viscosity</topic><topic>Viscosity coefficient</topic><topic>Viscosity coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Yuan, Junya</creatorcontrib><creatorcontrib>He, Bijiao</creatorcontrib><creatorcontrib>Zhang, Mingxing</creatorcontrib><creatorcontrib>Cai, Guobiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiang</au><au>Yuan, Junya</au><au>He, Bijiao</au><au>Zhang, Mingxing</au><au>Cai, Guobiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-12-25</date><risdate>2019</risdate><volume>881</volume><spage>585</spage><epage>601</epage><pages>585-601</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Grid is an important factor in numerical simulation of hypersonic aerothermodynamics. This paper introduces three criteria for determining grid size in the transition flow regime when using the computational fluid dynamics (CFD) method or the direct simulation Monte Carlo (DSMC) method. The numerical relationship between these three criteria sizes is deduced according to the one-dimensional fluid theory. Then, the relationship is verified using the CFD method to simulate the flow around a two-dimensional cylinder. At the same time, the dependence of simulation accuracy on grid size in the CFD and DSMC methods is studied and the mechanism is given. The result shows that the simulation accuracy of heat flux especially depends on the normal grid size next to surfaces, where the $Re_{\mathit{cell},w}$ criterion and the $\unicode[STIX]{x1D706}_{w}$ criterion based on local parameters are applicable and equivalent, while the $Re_{\mathit{cell},\infty }$ criterion based on the free-stream parameter is only applicable under the assumption of constant viscosity coefficient and constant temperature wall conditions. On the other hand, the trend of the heat flux changing with grid size obtained by CFD and DSMC is exactly the opposite. Therefore, the grid size must be strictly satisfied with the grid criteria when comparing CFD with DSMC and even the hybrid DSMC with Navier–Stokes method.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.756</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8045-0922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-12, Vol.881, p.585-601
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2342457344
source Cambridge University Press Journals Complete
subjects Accuracy
Aerodynamics
Aerothermodynamics
Computational fluid dynamics
Computer applications
Computer simulation
Criteria
Cylinders
Direct simulation Monte Carlo method
Flow simulation
Fluid dynamics
Heat
Heat flux
Heat transfer
Hydrodynamics
Mathematical models
Methods
Monte Carlo simulation
Parameters
Reynolds number
Simulation
Statistical methods
Theory
Time dependence
Transition flow
Two dimensional flow
Viscosity
Viscosity coefficient
Viscosity coefficients
title Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20criteria%20for%20numerical%20simulation%20of%20hypersonic%20aerothermodynamics%20in%20transition%C2%A0regime&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ren,%20Xiang&rft.date=2019-12-25&rft.volume=881&rft.spage=585&rft.epage=601&rft.pages=585-601&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.756&rft_dat=%3Cproquest_cross%3E2342457344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342457344&rft_id=info:pmid/&rfr_iscdi=true