Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning
A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required...
Gespeichert in:
Veröffentlicht in: | International journal of micro air vehicles 2014-03, Vol.6 (1), p.1-27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of micro air vehicles |
container_volume | 6 |
creator | Ross, Steven M. Cobb, Richard G. Baker, William P. |
description | A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire. |
doi_str_mv | 10.1260/1756-8293.6.1.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_proquest_journals_2342391655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1260_1756-8293.6.1.1</sage_id><sourcerecordid>2342391655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EElXpzGqJlaT-aJxkhApKpUpBUGbLcc4lVRoX2x363-MoICamO9179zvdQ-iWkpQyQeY0z0RSsJKnIqUpvUCTccJJfvnbR_UazbzfE0JoQXIu6ASt34PVn8qHVuM3UF2ybQ-Aq2NoD6rDS9sHZztsrMOPoFzb75Kq785469QedLDujF871fdRuEFXRnUeZj91ij6en7bLl2RTrdbLh02iOS9DkjOhhYYGjFCmyfSCcVE3RcFyCouFUbVhrGRNk5VEg25YWesiIwWLBaDmlE_R3cg9Ovt1Ah_k3p5cH09KxiOtpCLLoms-urSz3jsw8ujiS-4sKZFDZHIIRQ6hSCGpHLj344ZXO_hj_mf_BkAga-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342391655</pqid></control><display><type>article</type><title>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</title><source>Sage Journals GOLD Open Access 2024</source><creator>Ross, Steven M. ; Cobb, Richard G. ; Baker, William P.</creator><creatorcontrib>Ross, Steven M. ; Cobb, Richard G. ; Baker, William P.</creatorcontrib><description>A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.</description><identifier>ISSN: 1756-8293</identifier><identifier>EISSN: 1756-8307</identifier><identifier>DOI: 10.1260/1756-8293.6.1.1</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Bearing ; Computer simulation ; Flight tests ; Kalman filters ; Measurement methods ; Performance indices ; Real time ; Spectral methods ; Time optimal control ; Trajectory analysis ; Trajectory control ; Trajectory optimization ; Trajectory planning</subject><ispartof>International journal of micro air vehicles, 2014-03, Vol.6 (1), p.1-27</ispartof><rights>2014 SAGE Publications</rights><rights>2014 SAGE Publications. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</citedby><cites>FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1260/1756-8293.6.1.1$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1260/1756-8293.6.1.1$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,860,21945,27830,27901,27902,44921,45309</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1260/1756-8293.6.1.1?utm_source=summon&utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc></links><search><creatorcontrib>Ross, Steven M.</creatorcontrib><creatorcontrib>Cobb, Richard G.</creatorcontrib><creatorcontrib>Baker, William P.</creatorcontrib><title>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</title><title>International journal of micro air vehicles</title><description>A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.</description><subject>Algorithms</subject><subject>Bearing</subject><subject>Computer simulation</subject><subject>Flight tests</subject><subject>Kalman filters</subject><subject>Measurement methods</subject><subject>Performance indices</subject><subject>Real time</subject><subject>Spectral methods</subject><subject>Time optimal control</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><issn>1756-8293</issn><issn>1756-8307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kL1PwzAQxS0EElXpzGqJlaT-aJxkhApKpUpBUGbLcc4lVRoX2x363-MoICamO9179zvdQ-iWkpQyQeY0z0RSsJKnIqUpvUCTccJJfvnbR_UazbzfE0JoQXIu6ASt34PVn8qHVuM3UF2ybQ-Aq2NoD6rDS9sHZztsrMOPoFzb75Kq785469QedLDujF871fdRuEFXRnUeZj91ij6en7bLl2RTrdbLh02iOS9DkjOhhYYGjFCmyfSCcVE3RcFyCouFUbVhrGRNk5VEg25YWesiIwWLBaDmlE_R3cg9Ovt1Ah_k3p5cH09KxiOtpCLLoms-urSz3jsw8ujiS-4sKZFDZHIIRQ6hSCGpHLj344ZXO_hj_mf_BkAga-w</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Ross, Steven M.</creator><creator>Cobb, Richard G.</creator><creator>Baker, William P.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201403</creationdate><title>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</title><author>Ross, Steven M. ; Cobb, Richard G. ; Baker, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bearing</topic><topic>Computer simulation</topic><topic>Flight tests</topic><topic>Kalman filters</topic><topic>Measurement methods</topic><topic>Performance indices</topic><topic>Real time</topic><topic>Spectral methods</topic><topic>Time optimal control</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Steven M.</creatorcontrib><creatorcontrib>Cobb, Richard G.</creatorcontrib><creatorcontrib>Baker, William P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of micro air vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ross, Steven M.</au><au>Cobb, Richard G.</au><au>Baker, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</atitle><jtitle>International journal of micro air vehicles</jtitle><date>2014-03</date><risdate>2014</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1756-8293</issn><eissn>1756-8307</eissn><abstract>A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1260/1756-8293.6.1.1</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1756-8293 |
ispartof | International journal of micro air vehicles, 2014-03, Vol.6 (1), p.1-27 |
issn | 1756-8293 1756-8307 |
language | eng |
recordid | cdi_proquest_journals_2342391655 |
source | Sage Journals GOLD Open Access 2024 |
subjects | Algorithms Bearing Computer simulation Flight tests Kalman filters Measurement methods Performance indices Real time Spectral methods Time optimal control Trajectory analysis Trajectory control Trajectory optimization Trajectory planning |
title | Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Real-Time%20Optimal%20Control%20for%20Bearing-Only%20Trajectory%20Planning&rft.jtitle=International%20journal%20of%20micro%20air%20vehicles&rft.au=Ross,%20Steven%20M.&rft.date=2014-03&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1756-8293&rft.eissn=1756-8307&rft_id=info:doi/10.1260/1756-8293.6.1.1&rft_dat=%3Cproquest_AFRWT%3E2342391655%3C/proquest_AFRWT%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342391655&rft_id=info:pmid/&rft_sage_id=10.1260_1756-8293.6.1.1&rfr_iscdi=true |