Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning

A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of micro air vehicles 2014-03, Vol.6 (1), p.1-27
Hauptverfasser: Ross, Steven M., Cobb, Richard G., Baker, William P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 1
container_title International journal of micro air vehicles
container_volume 6
creator Ross, Steven M.
Cobb, Richard G.
Baker, William P.
description A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.
doi_str_mv 10.1260/1756-8293.6.1.1
format Article
fullrecord <record><control><sourceid>proquest_AFRWT</sourceid><recordid>TN_cdi_proquest_journals_2342391655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1260_1756-8293.6.1.1</sage_id><sourcerecordid>2342391655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EElXpzGqJlaT-aJxkhApKpUpBUGbLcc4lVRoX2x363-MoICamO9179zvdQ-iWkpQyQeY0z0RSsJKnIqUpvUCTccJJfvnbR_UazbzfE0JoQXIu6ASt34PVn8qHVuM3UF2ybQ-Aq2NoD6rDS9sHZztsrMOPoFzb75Kq785469QedLDujF871fdRuEFXRnUeZj91ij6en7bLl2RTrdbLh02iOS9DkjOhhYYGjFCmyfSCcVE3RcFyCouFUbVhrGRNk5VEg25YWesiIwWLBaDmlE_R3cg9Ovt1Ah_k3p5cH09KxiOtpCLLoms-urSz3jsw8ujiS-4sKZFDZHIIRQ6hSCGpHLj344ZXO_hj_mf_BkAga-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342391655</pqid></control><display><type>article</type><title>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</title><source>Sage Journals GOLD Open Access 2024</source><creator>Ross, Steven M. ; Cobb, Richard G. ; Baker, William P.</creator><creatorcontrib>Ross, Steven M. ; Cobb, Richard G. ; Baker, William P.</creatorcontrib><description>A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.</description><identifier>ISSN: 1756-8293</identifier><identifier>EISSN: 1756-8307</identifier><identifier>DOI: 10.1260/1756-8293.6.1.1</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Bearing ; Computer simulation ; Flight tests ; Kalman filters ; Measurement methods ; Performance indices ; Real time ; Spectral methods ; Time optimal control ; Trajectory analysis ; Trajectory control ; Trajectory optimization ; Trajectory planning</subject><ispartof>International journal of micro air vehicles, 2014-03, Vol.6 (1), p.1-27</ispartof><rights>2014 SAGE Publications</rights><rights>2014 SAGE Publications. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</citedby><cites>FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1260/1756-8293.6.1.1$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1260/1756-8293.6.1.1$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,860,21945,27830,27901,27902,44921,45309</link.rule.ids><linktorsrc>$$Uhttps://journals.sagepub.com/doi/full/10.1260/1756-8293.6.1.1?utm_source=summon&amp;utm_medium=discovery-provider$$EView_record_in_SAGE_Publications$$FView_record_in_$$GSAGE_Publications</linktorsrc></links><search><creatorcontrib>Ross, Steven M.</creatorcontrib><creatorcontrib>Cobb, Richard G.</creatorcontrib><creatorcontrib>Baker, William P.</creatorcontrib><title>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</title><title>International journal of micro air vehicles</title><description>A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.</description><subject>Algorithms</subject><subject>Bearing</subject><subject>Computer simulation</subject><subject>Flight tests</subject><subject>Kalman filters</subject><subject>Measurement methods</subject><subject>Performance indices</subject><subject>Real time</subject><subject>Spectral methods</subject><subject>Time optimal control</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><issn>1756-8293</issn><issn>1756-8307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kL1PwzAQxS0EElXpzGqJlaT-aJxkhApKpUpBUGbLcc4lVRoX2x363-MoICamO9179zvdQ-iWkpQyQeY0z0RSsJKnIqUpvUCTccJJfvnbR_UazbzfE0JoQXIu6ASt34PVn8qHVuM3UF2ybQ-Aq2NoD6rDS9sHZztsrMOPoFzb75Kq785469QedLDujF871fdRuEFXRnUeZj91ij6en7bLl2RTrdbLh02iOS9DkjOhhYYGjFCmyfSCcVE3RcFyCouFUbVhrGRNk5VEg25YWesiIwWLBaDmlE_R3cg9Ovt1Ah_k3p5cH09KxiOtpCLLoms-urSz3jsw8ujiS-4sKZFDZHIIRQ6hSCGpHLj344ZXO_hj_mf_BkAga-w</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Ross, Steven M.</creator><creator>Cobb, Richard G.</creator><creator>Baker, William P.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201403</creationdate><title>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</title><author>Ross, Steven M. ; Cobb, Richard G. ; Baker, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-726c6cedef6afd5c4236bd88271e44fabf2292dd590cecd29bc85082bc8eeb313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bearing</topic><topic>Computer simulation</topic><topic>Flight tests</topic><topic>Kalman filters</topic><topic>Measurement methods</topic><topic>Performance indices</topic><topic>Real time</topic><topic>Spectral methods</topic><topic>Time optimal control</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Steven M.</creatorcontrib><creatorcontrib>Cobb, Richard G.</creatorcontrib><creatorcontrib>Baker, William P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of micro air vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ross, Steven M.</au><au>Cobb, Richard G.</au><au>Baker, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning</atitle><jtitle>International journal of micro air vehicles</jtitle><date>2014-03</date><risdate>2014</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1756-8293</issn><eissn>1756-8307</eissn><abstract>A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1260/1756-8293.6.1.1</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1756-8293
ispartof International journal of micro air vehicles, 2014-03, Vol.6 (1), p.1-27
issn 1756-8293
1756-8307
language eng
recordid cdi_proquest_journals_2342391655
source Sage Journals GOLD Open Access 2024
subjects Algorithms
Bearing
Computer simulation
Flight tests
Kalman filters
Measurement methods
Performance indices
Real time
Spectral methods
Time optimal control
Trajectory analysis
Trajectory control
Trajectory optimization
Trajectory planning
title Stochastic Real-Time Optimal Control for Bearing-Only Trajectory Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_AFRWT&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Real-Time%20Optimal%20Control%20for%20Bearing-Only%20Trajectory%20Planning&rft.jtitle=International%20journal%20of%20micro%20air%20vehicles&rft.au=Ross,%20Steven%20M.&rft.date=2014-03&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1756-8293&rft.eissn=1756-8307&rft_id=info:doi/10.1260/1756-8293.6.1.1&rft_dat=%3Cproquest_AFRWT%3E2342391655%3C/proquest_AFRWT%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342391655&rft_id=info:pmid/&rft_sage_id=10.1260_1756-8293.6.1.1&rfr_iscdi=true