Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond

Notwithstanding the numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film carried out to date, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-01, Vol.15 (1), p.59-66
Hauptverfasser: Bakharev, Pavel V., Huang, Ming, Saxena, Manav, Lee, Suk Woo, Joo, Se Hun, Park, Sung O, Dong, Jichen, Camacho-Mojica, Dulce C., Jin, Sunghwan, Kwon, Youngwoo, Biswal, Mandakini, Ding, Feng, Kwak, Sang Kyu, Lee, Zonghoon, Ruoff, Rodney S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 59
container_title Nature nanotechnology
container_volume 15
creator Bakharev, Pavel V.
Huang, Ming
Saxena, Manav
Lee, Suk Woo
Joo, Se Hun
Park, Sung O
Dong, Jichen
Camacho-Mojica, Dulce C.
Jin, Sunghwan
Kwon, Youngwoo
Biswal, Mandakini
Ding, Feng
Kwak, Sang Kyu
Lee, Zonghoon
Ruoff, Rodney S.
description Notwithstanding the numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film carried out to date, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets in Bernal (AB)-stacked bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface triggers the formation of interlayer carbon–carbon bonds, resulting in a fluorinated diamond monolayer (‘F-diamane’). Induced by fluorine chemisorption, the phase transition from (AB)-stacked bilayer graphene to single-layer diamond was studied and verified by X-ray photoelectron, UV photoelectron, Raman, UV-Vis and electron energy loss spectroscopies, transmission electron microscopy and density functional theory calculations. The fluorination of graphene sheets in bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface results in a fluorinated diamond monolayer.
doi_str_mv 10.1038/s41565-019-0582-z
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2342379341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323478511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-96f2c7270a8ed365c2be695ab68592e97c375e0e86060fac8d783343377e8fe93</originalsourceid><addsrcrecordid>eNqNkU2L1TAUhoMozof-ADdScCMM1Xw0TbKU4hcMuNF1SNOTOxnapCatwx388eZOr1cQBFc5Ic_7ksOD0AuC3xDM5NvcEN7yGhNVYy5pff8InRPRyJoxxR-fZinO0EXOtxhzqmjzFJ0xIkmZ2Dn62d3A5K0Zx33lw7BaGKolmZBdTJNZfAxVdJU9QtUPM8c1VQPMMfuH112Kd6Hq_Wj2kMrNzDcQoHQtsXLjGpMPZiml2YfdCPWGDd5MMQzP0BNnxgzPj-cl-vbh_dfuU3395ePn7t11bZmgS61aR62gAhsJA2u5pT20ipu-lVxRUKJgHDDIFrfYGSsHIRlrGBMCpAPFLtHrrXdO8fsKedGTzxbG0QSIa9aUUdYIyQkp6Ku_0NuycCi_K1RDmVCsOVBko2yKOSdwek5-MmmvCdYHNXpTo4safVCj70vm5bF57ScYTonfLgpwtQF30EeXrYdg4YThYo9gWVrLhA87yf-nO788uOziGpYSpVs0FzzsIP3Z8d_f_wXLWryg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342379341</pqid></control><display><type>article</type><title>Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Bakharev, Pavel V. ; Huang, Ming ; Saxena, Manav ; Lee, Suk Woo ; Joo, Se Hun ; Park, Sung O ; Dong, Jichen ; Camacho-Mojica, Dulce C. ; Jin, Sunghwan ; Kwon, Youngwoo ; Biswal, Mandakini ; Ding, Feng ; Kwak, Sang Kyu ; Lee, Zonghoon ; Ruoff, Rodney S.</creator><creatorcontrib>Bakharev, Pavel V. ; Huang, Ming ; Saxena, Manav ; Lee, Suk Woo ; Joo, Se Hun ; Park, Sung O ; Dong, Jichen ; Camacho-Mojica, Dulce C. ; Jin, Sunghwan ; Kwon, Youngwoo ; Biswal, Mandakini ; Ding, Feng ; Kwak, Sang Kyu ; Lee, Zonghoon ; Ruoff, Rodney S.</creatorcontrib><description>Notwithstanding the numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film carried out to date, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets in Bernal (AB)-stacked bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface triggers the formation of interlayer carbon–carbon bonds, resulting in a fluorinated diamond monolayer (‘F-diamane’). Induced by fluorine chemisorption, the phase transition from (AB)-stacked bilayer graphene to single-layer diamond was studied and verified by X-ray photoelectron, UV photoelectron, Raman, UV-Vis and electron energy loss spectroscopies, transmission electron microscopy and density functional theory calculations. The fluorination of graphene sheets in bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface results in a fluorinated diamond monolayer.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0582-z</identifier><identifier>PMID: 31819243</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/133 ; 140/146 ; 639/301/357/1018 ; 639/301/357/918 ; Bilayers ; Carbon ; Chemical vapor deposition ; Chemisorption ; Chemistry and Materials Science ; Covalent bonds ; Density functional theory ; Diamond films ; Diamonds ; Electron energy loss spectroscopy ; Energy dissipation ; Energy loss ; Fluorination ; Fluorine ; Graphene ; Interlayers ; Materials Science ; Materials Science, Multidisciplinary ; Monolayers ; Multilayers ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; Nanotechnology and Microengineering ; Organic chemistry ; Phase transitions ; Photoelectrons ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Sheets ; Single crystals ; Technology ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2020-01, Vol.15 (1), p.59-66</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>211</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510815600009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c372t-96f2c7270a8ed365c2be695ab68592e97c375e0e86060fac8d783343377e8fe93</citedby><cites>FETCH-LOGICAL-c372t-96f2c7270a8ed365c2be695ab68592e97c375e0e86060fac8d783343377e8fe93</cites><orcidid>0000-0001-7458-6823 ; 0000-0002-0332-1534 ; 0000-0003-3246-4072 ; 0000-0002-6599-6764 ; 0000-0001-9153-9279 ; 0000-0003-2160-2281 ; 0000-0003-4636-3942 ; 0000-0003-4507-150X ; 0000-0002-9188-4619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31819243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakharev, Pavel V.</creatorcontrib><creatorcontrib>Huang, Ming</creatorcontrib><creatorcontrib>Saxena, Manav</creatorcontrib><creatorcontrib>Lee, Suk Woo</creatorcontrib><creatorcontrib>Joo, Se Hun</creatorcontrib><creatorcontrib>Park, Sung O</creatorcontrib><creatorcontrib>Dong, Jichen</creatorcontrib><creatorcontrib>Camacho-Mojica, Dulce C.</creatorcontrib><creatorcontrib>Jin, Sunghwan</creatorcontrib><creatorcontrib>Kwon, Youngwoo</creatorcontrib><creatorcontrib>Biswal, Mandakini</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Ruoff, Rodney S.</creatorcontrib><title>Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>NAT NANOTECHNOL</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Notwithstanding the numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film carried out to date, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets in Bernal (AB)-stacked bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface triggers the formation of interlayer carbon–carbon bonds, resulting in a fluorinated diamond monolayer (‘F-diamane’). Induced by fluorine chemisorption, the phase transition from (AB)-stacked bilayer graphene to single-layer diamond was studied and verified by X-ray photoelectron, UV photoelectron, Raman, UV-Vis and electron energy loss spectroscopies, transmission electron microscopy and density functional theory calculations. The fluorination of graphene sheets in bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface results in a fluorinated diamond monolayer.</description><subject>119/118</subject><subject>140/133</subject><subject>140/146</subject><subject>639/301/357/1018</subject><subject>639/301/357/918</subject><subject>Bilayers</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Chemisorption</subject><subject>Chemistry and Materials Science</subject><subject>Covalent bonds</subject><subject>Density functional theory</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>Photoelectrons</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sheets</subject><subject>Single crystals</subject><subject>Technology</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU2L1TAUhoMozof-ADdScCMM1Xw0TbKU4hcMuNF1SNOTOxnapCatwx388eZOr1cQBFc5Ic_7ksOD0AuC3xDM5NvcEN7yGhNVYy5pff8InRPRyJoxxR-fZinO0EXOtxhzqmjzFJ0xIkmZ2Dn62d3A5K0Zx33lw7BaGKolmZBdTJNZfAxVdJU9QtUPM8c1VQPMMfuH112Kd6Hq_Wj2kMrNzDcQoHQtsXLjGpMPZiml2YfdCPWGDd5MMQzP0BNnxgzPj-cl-vbh_dfuU3395ePn7t11bZmgS61aR62gAhsJA2u5pT20ipu-lVxRUKJgHDDIFrfYGSsHIRlrGBMCpAPFLtHrrXdO8fsKedGTzxbG0QSIa9aUUdYIyQkp6Ku_0NuycCi_K1RDmVCsOVBko2yKOSdwek5-MmmvCdYHNXpTo4safVCj70vm5bF57ScYTonfLgpwtQF30EeXrYdg4YThYo9gWVrLhA87yf-nO788uOziGpYSpVs0FzzsIP3Z8d_f_wXLWryg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bakharev, Pavel V.</creator><creator>Huang, Ming</creator><creator>Saxena, Manav</creator><creator>Lee, Suk Woo</creator><creator>Joo, Se Hun</creator><creator>Park, Sung O</creator><creator>Dong, Jichen</creator><creator>Camacho-Mojica, Dulce C.</creator><creator>Jin, Sunghwan</creator><creator>Kwon, Youngwoo</creator><creator>Biswal, Mandakini</creator><creator>Ding, Feng</creator><creator>Kwak, Sang Kyu</creator><creator>Lee, Zonghoon</creator><creator>Ruoff, Rodney S.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7458-6823</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid><orcidid>https://orcid.org/0000-0003-3246-4072</orcidid><orcidid>https://orcid.org/0000-0002-6599-6764</orcidid><orcidid>https://orcid.org/0000-0001-9153-9279</orcidid><orcidid>https://orcid.org/0000-0003-2160-2281</orcidid><orcidid>https://orcid.org/0000-0003-4636-3942</orcidid><orcidid>https://orcid.org/0000-0003-4507-150X</orcidid><orcidid>https://orcid.org/0000-0002-9188-4619</orcidid></search><sort><creationdate>20200101</creationdate><title>Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond</title><author>Bakharev, Pavel V. ; Huang, Ming ; Saxena, Manav ; Lee, Suk Woo ; Joo, Se Hun ; Park, Sung O ; Dong, Jichen ; Camacho-Mojica, Dulce C. ; Jin, Sunghwan ; Kwon, Youngwoo ; Biswal, Mandakini ; Ding, Feng ; Kwak, Sang Kyu ; Lee, Zonghoon ; Ruoff, Rodney S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-96f2c7270a8ed365c2be695ab68592e97c375e0e86060fac8d783343377e8fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/133</topic><topic>140/146</topic><topic>639/301/357/1018</topic><topic>639/301/357/918</topic><topic>Bilayers</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Chemisorption</topic><topic>Chemistry and Materials Science</topic><topic>Covalent bonds</topic><topic>Density functional theory</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>Photoelectrons</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sheets</topic><topic>Single crystals</topic><topic>Technology</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakharev, Pavel V.</creatorcontrib><creatorcontrib>Huang, Ming</creatorcontrib><creatorcontrib>Saxena, Manav</creatorcontrib><creatorcontrib>Lee, Suk Woo</creatorcontrib><creatorcontrib>Joo, Se Hun</creatorcontrib><creatorcontrib>Park, Sung O</creatorcontrib><creatorcontrib>Dong, Jichen</creatorcontrib><creatorcontrib>Camacho-Mojica, Dulce C.</creatorcontrib><creatorcontrib>Jin, Sunghwan</creatorcontrib><creatorcontrib>Kwon, Youngwoo</creatorcontrib><creatorcontrib>Biswal, Mandakini</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Ruoff, Rodney S.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakharev, Pavel V.</au><au>Huang, Ming</au><au>Saxena, Manav</au><au>Lee, Suk Woo</au><au>Joo, Se Hun</au><au>Park, Sung O</au><au>Dong, Jichen</au><au>Camacho-Mojica, Dulce C.</au><au>Jin, Sunghwan</au><au>Kwon, Youngwoo</au><au>Biswal, Mandakini</au><au>Ding, Feng</au><au>Kwak, Sang Kyu</au><au>Lee, Zonghoon</au><au>Ruoff, Rodney S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><stitle>NAT NANOTECHNOL</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>59</spage><epage>66</epage><pages>59-66</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Notwithstanding the numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film carried out to date, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets in Bernal (AB)-stacked bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface triggers the formation of interlayer carbon–carbon bonds, resulting in a fluorinated diamond monolayer (‘F-diamane’). Induced by fluorine chemisorption, the phase transition from (AB)-stacked bilayer graphene to single-layer diamond was studied and verified by X-ray photoelectron, UV photoelectron, Raman, UV-Vis and electron energy loss spectroscopies, transmission electron microscopy and density functional theory calculations. The fluorination of graphene sheets in bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface results in a fluorinated diamond monolayer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31819243</pmid><doi>10.1038/s41565-019-0582-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7458-6823</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid><orcidid>https://orcid.org/0000-0003-3246-4072</orcidid><orcidid>https://orcid.org/0000-0002-6599-6764</orcidid><orcidid>https://orcid.org/0000-0001-9153-9279</orcidid><orcidid>https://orcid.org/0000-0003-2160-2281</orcidid><orcidid>https://orcid.org/0000-0003-4636-3942</orcidid><orcidid>https://orcid.org/0000-0003-4507-150X</orcidid><orcidid>https://orcid.org/0000-0002-9188-4619</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2020-01, Vol.15 (1), p.59-66
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_2342379341
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Nature Journals Online; Alma/SFX Local Collection
subjects 119/118
140/133
140/146
639/301/357/1018
639/301/357/918
Bilayers
Carbon
Chemical vapor deposition
Chemisorption
Chemistry and Materials Science
Covalent bonds
Density functional theory
Diamond films
Diamonds
Electron energy loss spectroscopy
Energy dissipation
Energy loss
Fluorination
Fluorine
Graphene
Interlayers
Materials Science
Materials Science, Multidisciplinary
Monolayers
Multilayers
Nanoscience & Nanotechnology
Nanotechnology
Nanotechnology and Microengineering
Organic chemistry
Phase transitions
Photoelectrons
Science & Technology
Science & Technology - Other Topics
Sheets
Single crystals
Technology
Transmission electron microscopy
title Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T10%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20induced%20transformation%20of%20chemical%20vapour%20deposition%20grown%20bilayer%20graphene%20into%20fluorinated%20single-layer%20diamond&rft.jtitle=Nature%20nanotechnology&rft.au=Bakharev,%20Pavel%20V.&rft.date=2020-01-01&rft.volume=15&rft.issue=1&rft.spage=59&rft.epage=66&rft.pages=59-66&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0582-z&rft_dat=%3Cproquest_webof%3E2323478511%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342379341&rft_id=info:pmid/31819243&rfr_iscdi=true