An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies
This study examined the use of degree-day models to predict alfalfa weevil Hypera postica (Gyllenhal) (Coleoptera: Curculionidae) population development on the Canadian prairies. Air temperatures, alfalfa weevil abundance, and instar data were collected in 2013 and 2014 from 13 alfalfa ( Medicago sa...
Gespeichert in:
Veröffentlicht in: | Canadian entomologist 2020-02, Vol.152 (1), p.110-129 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 110 |
container_title | Canadian entomologist |
container_volume | 152 |
creator | Soroka, Juliana Grenkow, Larry Cárcamo, Héctor Meers, Scott Barkley, Shelley Gavloski, John |
description | This study examined the use of degree-day models to predict alfalfa weevil
Hypera postica
(Gyllenhal) (Coleoptera: Curculionidae) population development on the Canadian prairies. Air temperatures, alfalfa weevil abundance, and instar data were collected in 2013 and 2014 from 13 alfalfa (
Medicago sativa
Linnaeus; Fabaceae) fields across Alberta, Saskatchewan, and Manitoba. We coupled three alfalfa weevil population prediction models with three temperature data sources to determine which combination most closely aligned with results observed. Our objective was to find the best prediction of peak occurrence of second instar alfalfa weevils, the optimum time for management decisions. Of the parameters analysed, prediction model had the greatest effect on the accuracy of peak instar prediction, with Harcourt and North Dakota models better at predicting population peaks than the Guppy–Mukerji model. Interactions between temperature source and prediction model significantly affected prediction accuracy. The probability of accurate prediction of population peaks to within 3.5 days of actual occurrence using in-field and multiple-site temperature data sets, combined with Harcourt and North Dakota development models, was 0.45–0.70. Lower predictability was found from fields in the Mixed Grass Ecoregion than in other ecoregions. The use of the recommended models can assist growers in timing their monitoring activities and deciding if pest management action is warranted. |
doi_str_mv | 10.4039/tce.2019.71 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2342351951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342351951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-df4d81758f43b6d67554e11dcd6dec6bcd00b0b26b2a47dcb69e2d2408e1048a3</originalsourceid><addsrcrecordid>eNotkFtLxDAQhYMouK4--QcCvijSNbfefJPiDRb0QcG3kCbT3Szdpiapsq_-cltXGJgZOHMO8yF0TslCEF7eRA0LRmi5yOkBmtGSFglnghyiGSFknEX-cYxOQtiMa0p5OUM_dx1WIUAIW-gidg02sPIAiVE7vHUG2oCjw70HY3XEcQ24X0PnWrfaTWrVNlPhb4Av2-LLyrXg-ghe3eJq8HporeusUXCFXfd3XqlOGas6_OqV9RbCKToaPQKc_fc5en-4f6uekuXL43N1t0w0y2hMTCNMQfO0aASvM5PlaSqAUqNNZkBntTaE1KRmWc2UyI2usxKYGb8vgBJRKD5HF3vf3rvPAUKUGzf4boyUjAvGU1qOTOboeq_S3oXgoZG9t1vld5ISOUGWI2Q5QZY55b8cVHFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342351951</pqid></control><display><type>article</type><title>An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies</title><source>Cambridge University Press Journals Complete</source><creator>Soroka, Juliana ; Grenkow, Larry ; Cárcamo, Héctor ; Meers, Scott ; Barkley, Shelley ; Gavloski, John</creator><creatorcontrib>Soroka, Juliana ; Grenkow, Larry ; Cárcamo, Héctor ; Meers, Scott ; Barkley, Shelley ; Gavloski, John</creatorcontrib><description>This study examined the use of degree-day models to predict alfalfa weevil
Hypera postica
(Gyllenhal) (Coleoptera: Curculionidae) population development on the Canadian prairies. Air temperatures, alfalfa weevil abundance, and instar data were collected in 2013 and 2014 from 13 alfalfa (
Medicago sativa
Linnaeus; Fabaceae) fields across Alberta, Saskatchewan, and Manitoba. We coupled three alfalfa weevil population prediction models with three temperature data sources to determine which combination most closely aligned with results observed. Our objective was to find the best prediction of peak occurrence of second instar alfalfa weevils, the optimum time for management decisions. Of the parameters analysed, prediction model had the greatest effect on the accuracy of peak instar prediction, with Harcourt and North Dakota models better at predicting population peaks than the Guppy–Mukerji model. Interactions between temperature source and prediction model significantly affected prediction accuracy. The probability of accurate prediction of population peaks to within 3.5 days of actual occurrence using in-field and multiple-site temperature data sets, combined with Harcourt and North Dakota development models, was 0.45–0.70. Lower predictability was found from fields in the Mixed Grass Ecoregion than in other ecoregions. The use of the recommended models can assist growers in timing their monitoring activities and deciding if pest management action is warranted.</description><identifier>ISSN: 0008-347X</identifier><identifier>EISSN: 1918-3240</identifier><identifier>DOI: 10.4039/tce.2019.71</identifier><language>eng</language><publisher>Ottawa: Cambridge University Press</publisher><subject>Accuracy ; Adults ; Air temperature ; Alfalfa ; Animal populations ; Coleoptera ; Crops ; Curculionidae ; Decision analysis ; Entomology ; Fields ; Hypera postica ; Insects ; Instars ; Medicago sativa ; Methods ; Model accuracy ; Pest control ; Phenology ; Prairies ; Prediction models ; Probability theory ; Regions ; Studies ; Temperature data</subject><ispartof>Canadian entomologist, 2020-02, Vol.152 (1), p.110-129</ispartof><rights>2019 Entomological Society of Canada. Parts of this are a work of Her Majesty the Queen in Right of Canada</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-df4d81758f43b6d67554e11dcd6dec6bcd00b0b26b2a47dcb69e2d2408e1048a3</citedby><cites>FETCH-LOGICAL-c261t-df4d81758f43b6d67554e11dcd6dec6bcd00b0b26b2a47dcb69e2d2408e1048a3</cites><orcidid>0000-0002-6501-6383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Soroka, Juliana</creatorcontrib><creatorcontrib>Grenkow, Larry</creatorcontrib><creatorcontrib>Cárcamo, Héctor</creatorcontrib><creatorcontrib>Meers, Scott</creatorcontrib><creatorcontrib>Barkley, Shelley</creatorcontrib><creatorcontrib>Gavloski, John</creatorcontrib><title>An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies</title><title>Canadian entomologist</title><description>This study examined the use of degree-day models to predict alfalfa weevil
Hypera postica
(Gyllenhal) (Coleoptera: Curculionidae) population development on the Canadian prairies. Air temperatures, alfalfa weevil abundance, and instar data were collected in 2013 and 2014 from 13 alfalfa (
Medicago sativa
Linnaeus; Fabaceae) fields across Alberta, Saskatchewan, and Manitoba. We coupled three alfalfa weevil population prediction models with three temperature data sources to determine which combination most closely aligned with results observed. Our objective was to find the best prediction of peak occurrence of second instar alfalfa weevils, the optimum time for management decisions. Of the parameters analysed, prediction model had the greatest effect on the accuracy of peak instar prediction, with Harcourt and North Dakota models better at predicting population peaks than the Guppy–Mukerji model. Interactions between temperature source and prediction model significantly affected prediction accuracy. The probability of accurate prediction of population peaks to within 3.5 days of actual occurrence using in-field and multiple-site temperature data sets, combined with Harcourt and North Dakota development models, was 0.45–0.70. Lower predictability was found from fields in the Mixed Grass Ecoregion than in other ecoregions. The use of the recommended models can assist growers in timing their monitoring activities and deciding if pest management action is warranted.</description><subject>Accuracy</subject><subject>Adults</subject><subject>Air temperature</subject><subject>Alfalfa</subject><subject>Animal populations</subject><subject>Coleoptera</subject><subject>Crops</subject><subject>Curculionidae</subject><subject>Decision analysis</subject><subject>Entomology</subject><subject>Fields</subject><subject>Hypera postica</subject><subject>Insects</subject><subject>Instars</subject><subject>Medicago sativa</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Pest control</subject><subject>Phenology</subject><subject>Prairies</subject><subject>Prediction models</subject><subject>Probability theory</subject><subject>Regions</subject><subject>Studies</subject><subject>Temperature data</subject><issn>0008-347X</issn><issn>1918-3240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkFtLxDAQhYMouK4--QcCvijSNbfefJPiDRb0QcG3kCbT3Szdpiapsq_-cltXGJgZOHMO8yF0TslCEF7eRA0LRmi5yOkBmtGSFglnghyiGSFknEX-cYxOQtiMa0p5OUM_dx1WIUAIW-gidg02sPIAiVE7vHUG2oCjw70HY3XEcQ24X0PnWrfaTWrVNlPhb4Av2-LLyrXg-ghe3eJq8HporeusUXCFXfd3XqlOGas6_OqV9RbCKToaPQKc_fc5en-4f6uekuXL43N1t0w0y2hMTCNMQfO0aASvM5PlaSqAUqNNZkBntTaE1KRmWc2UyI2usxKYGb8vgBJRKD5HF3vf3rvPAUKUGzf4boyUjAvGU1qOTOboeq_S3oXgoZG9t1vld5ISOUGWI2Q5QZY55b8cVHFE</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Soroka, Juliana</creator><creator>Grenkow, Larry</creator><creator>Cárcamo, Héctor</creator><creator>Meers, Scott</creator><creator>Barkley, Shelley</creator><creator>Gavloski, John</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M3G</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6501-6383</orcidid></search><sort><creationdate>20200201</creationdate><title>An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies</title><author>Soroka, Juliana ; Grenkow, Larry ; Cárcamo, Héctor ; Meers, Scott ; Barkley, Shelley ; Gavloski, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-df4d81758f43b6d67554e11dcd6dec6bcd00b0b26b2a47dcb69e2d2408e1048a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adults</topic><topic>Air temperature</topic><topic>Alfalfa</topic><topic>Animal populations</topic><topic>Coleoptera</topic><topic>Crops</topic><topic>Curculionidae</topic><topic>Decision analysis</topic><topic>Entomology</topic><topic>Fields</topic><topic>Hypera postica</topic><topic>Insects</topic><topic>Instars</topic><topic>Medicago sativa</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Pest control</topic><topic>Phenology</topic><topic>Prairies</topic><topic>Prediction models</topic><topic>Probability theory</topic><topic>Regions</topic><topic>Studies</topic><topic>Temperature data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soroka, Juliana</creatorcontrib><creatorcontrib>Grenkow, Larry</creatorcontrib><creatorcontrib>Cárcamo, Héctor</creatorcontrib><creatorcontrib>Meers, Scott</creatorcontrib><creatorcontrib>Barkley, Shelley</creatorcontrib><creatorcontrib>Gavloski, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Canadian entomologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soroka, Juliana</au><au>Grenkow, Larry</au><au>Cárcamo, Héctor</au><au>Meers, Scott</au><au>Barkley, Shelley</au><au>Gavloski, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies</atitle><jtitle>Canadian entomologist</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>152</volume><issue>1</issue><spage>110</spage><epage>129</epage><pages>110-129</pages><issn>0008-347X</issn><eissn>1918-3240</eissn><abstract>This study examined the use of degree-day models to predict alfalfa weevil
Hypera postica
(Gyllenhal) (Coleoptera: Curculionidae) population development on the Canadian prairies. Air temperatures, alfalfa weevil abundance, and instar data were collected in 2013 and 2014 from 13 alfalfa (
Medicago sativa
Linnaeus; Fabaceae) fields across Alberta, Saskatchewan, and Manitoba. We coupled three alfalfa weevil population prediction models with three temperature data sources to determine which combination most closely aligned with results observed. Our objective was to find the best prediction of peak occurrence of second instar alfalfa weevils, the optimum time for management decisions. Of the parameters analysed, prediction model had the greatest effect on the accuracy of peak instar prediction, with Harcourt and North Dakota models better at predicting population peaks than the Guppy–Mukerji model. Interactions between temperature source and prediction model significantly affected prediction accuracy. The probability of accurate prediction of population peaks to within 3.5 days of actual occurrence using in-field and multiple-site temperature data sets, combined with Harcourt and North Dakota development models, was 0.45–0.70. Lower predictability was found from fields in the Mixed Grass Ecoregion than in other ecoregions. The use of the recommended models can assist growers in timing their monitoring activities and deciding if pest management action is warranted.</abstract><cop>Ottawa</cop><pub>Cambridge University Press</pub><doi>10.4039/tce.2019.71</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6501-6383</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-347X |
ispartof | Canadian entomologist, 2020-02, Vol.152 (1), p.110-129 |
issn | 0008-347X 1918-3240 |
language | eng |
recordid | cdi_proquest_journals_2342351951 |
source | Cambridge University Press Journals Complete |
subjects | Accuracy Adults Air temperature Alfalfa Animal populations Coleoptera Crops Curculionidae Decision analysis Entomology Fields Hypera postica Insects Instars Medicago sativa Methods Model accuracy Pest control Phenology Prairies Prediction models Probability theory Regions Studies Temperature data |
title | An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20assessment%20of%20degree-day%20models%20to%20predict%20the%20phenology%20of%20alfalfa%20weevil%20(Coleoptera:%20Curculionidae)%20on%20the%20Canadian%20Prairies&rft.jtitle=Canadian%20entomologist&rft.au=Soroka,%20Juliana&rft.date=2020-02-01&rft.volume=152&rft.issue=1&rft.spage=110&rft.epage=129&rft.pages=110-129&rft.issn=0008-347X&rft.eissn=1918-3240&rft_id=info:doi/10.4039/tce.2019.71&rft_dat=%3Cproquest_cross%3E2342351951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342351951&rft_id=info:pmid/&rfr_iscdi=true |