Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers
Cross‐linking polymethylhydrosiloxane (PMHS) with divinylthiophene (DVT) via hydrosilylation in highly dilute conditions and subsequent supercritical drying in CO2 yield a polymeric aerogel containing aromatic sulfur integrally and uniformly distributed throughout the monolith. Fourier‐transform inf...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2020-01, Vol.221 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Macromolecular chemistry and physics |
container_volume | 221 |
creator | Taheri, Poroshat Bokka, Apparao Asgari, Parham Jeon, Junha Lang, John C. Campostrini, Renzo Sorarù, Gian Domenico Kroll, Peter |
description | Cross‐linking polymethylhydrosiloxane (PMHS) with divinylthiophene (DVT) via hydrosilylation in highly dilute conditions and subsequent supercritical drying in CO2 yield a polymeric aerogel containing aromatic sulfur integrally and uniformly distributed throughout the monolith. Fourier‐transform infrared (FT‐IR) spectroscopy indicates almost complete consumption of vinyl groups and SiH bonds in the product. Both FT‐IR and Raman spectroscopic analyses support loss of conjugation of vinyl groups with the retained double bonds of the thiophene ring. Scanning electron microscopy (SEM) indicates a condensed colloidal structure with characteristic particulate diameters of about 165 nm. SEM coupled with energy dispersive X‐ray spectroscopy elemental mapping shows that sulfur is distributed homogeneously in the polymeric aerogel. Porosimetry of the mesoporous aerogel indicates the effective average pore diameters are about 12 nm. Thermogravimetric analysis (TGA) establishes greater thermal stability of the PMHS‐DVT product than either of the pure unreacted components. TGA coupled with mass spectrometric (TG‐MS) identification of the volatiles released during pyrolysis shows that sulfur is driven from the cross‐linked polymer as thiophene and its derivatives. Recorded mass spectra support the hypothesis that cross‐linking DVT bridges between PMHS chains in the polymeric aerogel, and that this results in a more thermally stable monolith.
Polymethylhydrosiloxane (PMHS) and divinylthiophene (DVT) react under highly dilute conditions to form a wet gel. After supercritical drying this yields a novel sulfur‐containing polymeric aerogel, with DVT cross‐linking between PMHS chains. Thermogravimetric analysis coupled with mass spectrometric analysis of volatiles released during pyrolysis suggests sulfur cleavage from the polymer as thiophene and its derivatives. |
doi_str_mv | 10.1002/macp.201900380 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2342234774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342234774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-f59a6bdcd314d7f966dee851347dc585b9a9f6a30eb60660f727f1661a17a6143</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMKVcyTOKWs7tuNjiXhJBSoKZ8tN7ColiYudgHrjE_hGvoRERXDksNrd0cysdhA6xTDBAOS81vlmQgBLAJrCHhphRnBMJWX7_QyExJgycoiOQlgDQApSjNDjvXszVbToKtv5r4_PzDWtLpuyWUWZdyH00KxsXoZ9ujJNG1nno0XZwxc6mCKae5Mbr-syj-au2tbGh2N0YHUVzMlPH6Pnq8un7CaePVzfZtNZnFOWQGyZ1HxZ5AXFSSGs5LwwJmWYJqLIWcqWUkvLNQWz5MA5WEGExZxjjYXmOKFjdLbz3Xj32pnQqrXrfNOfVIQmpC8hBtZkx8qHd7yxauPLWvutwqCG3NSQm_rNrRfIneC9rMz2H7a6m2bzP-03bSZz7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342234774</pqid></control><display><type>article</type><title>Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Taheri, Poroshat ; Bokka, Apparao ; Asgari, Parham ; Jeon, Junha ; Lang, John C. ; Campostrini, Renzo ; Sorarù, Gian Domenico ; Kroll, Peter</creator><creatorcontrib>Taheri, Poroshat ; Bokka, Apparao ; Asgari, Parham ; Jeon, Junha ; Lang, John C. ; Campostrini, Renzo ; Sorarù, Gian Domenico ; Kroll, Peter</creatorcontrib><description>Cross‐linking polymethylhydrosiloxane (PMHS) with divinylthiophene (DVT) via hydrosilylation in highly dilute conditions and subsequent supercritical drying in CO2 yield a polymeric aerogel containing aromatic sulfur integrally and uniformly distributed throughout the monolith. Fourier‐transform infrared (FT‐IR) spectroscopy indicates almost complete consumption of vinyl groups and SiH bonds in the product. Both FT‐IR and Raman spectroscopic analyses support loss of conjugation of vinyl groups with the retained double bonds of the thiophene ring. Scanning electron microscopy (SEM) indicates a condensed colloidal structure with characteristic particulate diameters of about 165 nm. SEM coupled with energy dispersive X‐ray spectroscopy elemental mapping shows that sulfur is distributed homogeneously in the polymeric aerogel. Porosimetry of the mesoporous aerogel indicates the effective average pore diameters are about 12 nm. Thermogravimetric analysis (TGA) establishes greater thermal stability of the PMHS‐DVT product than either of the pure unreacted components. TGA coupled with mass spectrometric (TG‐MS) identification of the volatiles released during pyrolysis shows that sulfur is driven from the cross‐linked polymer as thiophene and its derivatives. Recorded mass spectra support the hypothesis that cross‐linking DVT bridges between PMHS chains in the polymeric aerogel, and that this results in a more thermally stable monolith.
Polymethylhydrosiloxane (PMHS) and divinylthiophene (DVT) react under highly dilute conditions to form a wet gel. After supercritical drying this yields a novel sulfur‐containing polymeric aerogel, with DVT cross‐linking between PMHS chains. Thermogravimetric analysis coupled with mass spectrometric analysis of volatiles released during pyrolysis suggests sulfur cleavage from the polymer as thiophene and its derivatives.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201900380</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Conjugation ; cross‐linking agents ; Hydrosilylation ; Infrared spectroscopy ; Mapping ; Mass spectra ; Pyrolysis ; Scanning electron microscopy ; Spectrometry ; Spectrum analysis ; Stability analysis ; Sulfur ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Macromolecular chemistry and physics, 2020-01, Vol.221 (2), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-f59a6bdcd314d7f966dee851347dc585b9a9f6a30eb60660f727f1661a17a6143</citedby><cites>FETCH-LOGICAL-c3540-f59a6bdcd314d7f966dee851347dc585b9a9f6a30eb60660f727f1661a17a6143</cites><orcidid>0000-0003-4782-2805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201900380$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201900380$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Taheri, Poroshat</creatorcontrib><creatorcontrib>Bokka, Apparao</creatorcontrib><creatorcontrib>Asgari, Parham</creatorcontrib><creatorcontrib>Jeon, Junha</creatorcontrib><creatorcontrib>Lang, John C.</creatorcontrib><creatorcontrib>Campostrini, Renzo</creatorcontrib><creatorcontrib>Sorarù, Gian Domenico</creatorcontrib><creatorcontrib>Kroll, Peter</creatorcontrib><title>Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers</title><title>Macromolecular chemistry and physics</title><description>Cross‐linking polymethylhydrosiloxane (PMHS) with divinylthiophene (DVT) via hydrosilylation in highly dilute conditions and subsequent supercritical drying in CO2 yield a polymeric aerogel containing aromatic sulfur integrally and uniformly distributed throughout the monolith. Fourier‐transform infrared (FT‐IR) spectroscopy indicates almost complete consumption of vinyl groups and SiH bonds in the product. Both FT‐IR and Raman spectroscopic analyses support loss of conjugation of vinyl groups with the retained double bonds of the thiophene ring. Scanning electron microscopy (SEM) indicates a condensed colloidal structure with characteristic particulate diameters of about 165 nm. SEM coupled with energy dispersive X‐ray spectroscopy elemental mapping shows that sulfur is distributed homogeneously in the polymeric aerogel. Porosimetry of the mesoporous aerogel indicates the effective average pore diameters are about 12 nm. Thermogravimetric analysis (TGA) establishes greater thermal stability of the PMHS‐DVT product than either of the pure unreacted components. TGA coupled with mass spectrometric (TG‐MS) identification of the volatiles released during pyrolysis shows that sulfur is driven from the cross‐linked polymer as thiophene and its derivatives. Recorded mass spectra support the hypothesis that cross‐linking DVT bridges between PMHS chains in the polymeric aerogel, and that this results in a more thermally stable monolith.
Polymethylhydrosiloxane (PMHS) and divinylthiophene (DVT) react under highly dilute conditions to form a wet gel. After supercritical drying this yields a novel sulfur‐containing polymeric aerogel, with DVT cross‐linking between PMHS chains. Thermogravimetric analysis coupled with mass spectrometric analysis of volatiles released during pyrolysis suggests sulfur cleavage from the polymer as thiophene and its derivatives.</description><subject>Aerogels</subject><subject>Conjugation</subject><subject>cross‐linking agents</subject><subject>Hydrosilylation</subject><subject>Infrared spectroscopy</subject><subject>Mapping</subject><subject>Mass spectra</subject><subject>Pyrolysis</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Sulfur</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMKVcyTOKWs7tuNjiXhJBSoKZ8tN7ColiYudgHrjE_hGvoRERXDksNrd0cysdhA6xTDBAOS81vlmQgBLAJrCHhphRnBMJWX7_QyExJgycoiOQlgDQApSjNDjvXszVbToKtv5r4_PzDWtLpuyWUWZdyH00KxsXoZ9ujJNG1nno0XZwxc6mCKae5Mbr-syj-au2tbGh2N0YHUVzMlPH6Pnq8un7CaePVzfZtNZnFOWQGyZ1HxZ5AXFSSGs5LwwJmWYJqLIWcqWUkvLNQWz5MA5WEGExZxjjYXmOKFjdLbz3Xj32pnQqrXrfNOfVIQmpC8hBtZkx8qHd7yxauPLWvutwqCG3NSQm_rNrRfIneC9rMz2H7a6m2bzP-03bSZz7Q</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Taheri, Poroshat</creator><creator>Bokka, Apparao</creator><creator>Asgari, Parham</creator><creator>Jeon, Junha</creator><creator>Lang, John C.</creator><creator>Campostrini, Renzo</creator><creator>Sorarù, Gian Domenico</creator><creator>Kroll, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4782-2805</orcidid></search><sort><creationdate>202001</creationdate><title>Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers</title><author>Taheri, Poroshat ; Bokka, Apparao ; Asgari, Parham ; Jeon, Junha ; Lang, John C. ; Campostrini, Renzo ; Sorarù, Gian Domenico ; Kroll, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-f59a6bdcd314d7f966dee851347dc585b9a9f6a30eb60660f727f1661a17a6143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogels</topic><topic>Conjugation</topic><topic>cross‐linking agents</topic><topic>Hydrosilylation</topic><topic>Infrared spectroscopy</topic><topic>Mapping</topic><topic>Mass spectra</topic><topic>Pyrolysis</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Sulfur</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taheri, Poroshat</creatorcontrib><creatorcontrib>Bokka, Apparao</creatorcontrib><creatorcontrib>Asgari, Parham</creatorcontrib><creatorcontrib>Jeon, Junha</creatorcontrib><creatorcontrib>Lang, John C.</creatorcontrib><creatorcontrib>Campostrini, Renzo</creatorcontrib><creatorcontrib>Sorarù, Gian Domenico</creatorcontrib><creatorcontrib>Kroll, Peter</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taheri, Poroshat</au><au>Bokka, Apparao</au><au>Asgari, Parham</au><au>Jeon, Junha</au><au>Lang, John C.</au><au>Campostrini, Renzo</au><au>Sorarù, Gian Domenico</au><au>Kroll, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>221</volume><issue>2</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Cross‐linking polymethylhydrosiloxane (PMHS) with divinylthiophene (DVT) via hydrosilylation in highly dilute conditions and subsequent supercritical drying in CO2 yield a polymeric aerogel containing aromatic sulfur integrally and uniformly distributed throughout the monolith. Fourier‐transform infrared (FT‐IR) spectroscopy indicates almost complete consumption of vinyl groups and SiH bonds in the product. Both FT‐IR and Raman spectroscopic analyses support loss of conjugation of vinyl groups with the retained double bonds of the thiophene ring. Scanning electron microscopy (SEM) indicates a condensed colloidal structure with characteristic particulate diameters of about 165 nm. SEM coupled with energy dispersive X‐ray spectroscopy elemental mapping shows that sulfur is distributed homogeneously in the polymeric aerogel. Porosimetry of the mesoporous aerogel indicates the effective average pore diameters are about 12 nm. Thermogravimetric analysis (TGA) establishes greater thermal stability of the PMHS‐DVT product than either of the pure unreacted components. TGA coupled with mass spectrometric (TG‐MS) identification of the volatiles released during pyrolysis shows that sulfur is driven from the cross‐linked polymer as thiophene and its derivatives. Recorded mass spectra support the hypothesis that cross‐linking DVT bridges between PMHS chains in the polymeric aerogel, and that this results in a more thermally stable monolith.
Polymethylhydrosiloxane (PMHS) and divinylthiophene (DVT) react under highly dilute conditions to form a wet gel. After supercritical drying this yields a novel sulfur‐containing polymeric aerogel, with DVT cross‐linking between PMHS chains. Thermogravimetric analysis coupled with mass spectrometric analysis of volatiles released during pyrolysis suggests sulfur cleavage from the polymer as thiophene and its derivatives.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.201900380</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4782-2805</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2020-01, Vol.221 (2), p.n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_journals_2342234774 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aerogels Conjugation cross‐linking agents Hydrosilylation Infrared spectroscopy Mapping Mass spectra Pyrolysis Scanning electron microscopy Spectrometry Spectrum analysis Stability analysis Sulfur Thermal stability Thermogravimetric analysis |
title | Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Sulfur%E2%80%90Containing%20Cross%E2%80%90Linking%20Agent%20for%20Si%E2%80%90Based%20Preceramic%20Polymers&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Taheri,%20Poroshat&rft.date=2020-01&rft.volume=221&rft.issue=2&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201900380&rft_dat=%3Cproquest_cross%3E2342234774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342234774&rft_id=info:pmid/&rfr_iscdi=true |