Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures
Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chemical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon. However, a full theoretica...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-01, Vol.152 (3), p.034108-034108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034108 |
---|---|
container_issue | 3 |
container_start_page | 034108 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Sánchez-Barquilla, M. Silva, R. E. F. Feist, J. |
description | Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chemical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon. However, a full theoretical description of both matter and light is an extremely challenging task. Typical theoretical approaches simplify the description of the photonic environment by describing it as a single mode or few modes. While this approximation is accurate in some cases, it breaks down strongly in complex environments, such as within plasmonic nanocavities, and the electromagnetic environment must be fully taken into account. This requires the quantum description of a continuum of bosonic modes, a problem that is computationally hard. We here investigate a compromise where the quantum character of light is taken into account at modest computational cost. To do so, we focus on a quantum emitter that interacts with an arbitrary photonic spectral density and employ the cumulant, or cluster, expansion method to the Heisenberg equations of motion up to first, second, and third order. We benchmark the method by comparing it with exact solutions for specific situations and show that it can accurately represent dynamics for many parameter ranges. |
doi_str_mv | 10.1063/1.5138937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2340457938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340457938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e27ddbd3241702e5129b5603ff8c2831d8a743f6940418df5fd9379b8f6941fd3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOo4u_AEJuFGhx7w6nSxl8AUDbnTdpDuJk6EfY5IG3fkP_qFfYpoZXbhwU0VVHS51LwAnGM0w4vQKz3JMhaTFDphgJGRWcIl2wQQhgjPJET8AhyGsEEK4IGwfHFAsuZCMT4CeD-3QqC5C87ZWXXB9B23vYVwaGL1RsTXp1lvYuJdl_Pr4bFWMxkPXparqmPiQBqh85aJX_h0mwHinGhiiH-o4eBOOwJ5VTTDH2z4Fz7c3T_P7bPF49zC_XmQ1FTRmhhRaV5oShgtETI6JrHKOqLWiJoJiLVTBqOWSIYaFtrnVybOsxLjCVtMpON_orn3_OpgQy9aF2jTJn-mHUBLKGCGCoDyhZ3_QVT_4Ln03UojlhUw_TcHFhqp9H4I3tlx71yaXJUblGH2Jy230iT3dKg5Va_Qv-ZN1Ai43QKhdVGNy_6h9A08IjNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340457938</pqid></control><display><type>article</type><title>Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sánchez-Barquilla, M. ; Silva, R. E. F. ; Feist, J.</creator><creatorcontrib>Sánchez-Barquilla, M. ; Silva, R. E. F. ; Feist, J.</creatorcontrib><description>Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chemical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon. However, a full theoretical description of both matter and light is an extremely challenging task. Typical theoretical approaches simplify the description of the photonic environment by describing it as a single mode or few modes. While this approximation is accurate in some cases, it breaks down strongly in complex environments, such as within plasmonic nanocavities, and the electromagnetic environment must be fully taken into account. This requires the quantum description of a continuum of bosonic modes, a problem that is computationally hard. We here investigate a compromise where the quantum character of light is taken into account at modest computational cost. To do so, we focus on a quantum emitter that interacts with an arbitrary photonic spectral density and employ the cumulant, or cluster, expansion method to the Heisenberg equations of motion up to first, second, and third order. We benchmark the method by comparing it with exact solutions for specific situations and show that it can accurately represent dynamics for many parameter ranges.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5138937</identifier><identifier>PMID: 31968946</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Emitters ; Equations of motion ; Exact solutions ; Material properties ; Optical properties ; Organic chemistry ; Photonics ; Physics ; Spectral emittance ; Transport properties</subject><ispartof>The Journal of chemical physics, 2020-01, Vol.152 (3), p.034108-034108</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e27ddbd3241702e5129b5603ff8c2831d8a743f6940418df5fd9379b8f6941fd3</citedby><cites>FETCH-LOGICAL-c383t-e27ddbd3241702e5129b5603ff8c2831d8a743f6940418df5fd9379b8f6941fd3</cites><orcidid>0000-0002-1920-5861 ; 0000-0002-7972-0646 ; 0000000279720646 ; 0000000219205861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5138937$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31968946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Barquilla, M.</creatorcontrib><creatorcontrib>Silva, R. E. F.</creatorcontrib><creatorcontrib>Feist, J.</creatorcontrib><title>Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chemical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon. However, a full theoretical description of both matter and light is an extremely challenging task. Typical theoretical approaches simplify the description of the photonic environment by describing it as a single mode or few modes. While this approximation is accurate in some cases, it breaks down strongly in complex environments, such as within plasmonic nanocavities, and the electromagnetic environment must be fully taken into account. This requires the quantum description of a continuum of bosonic modes, a problem that is computationally hard. We here investigate a compromise where the quantum character of light is taken into account at modest computational cost. To do so, we focus on a quantum emitter that interacts with an arbitrary photonic spectral density and employ the cumulant, or cluster, expansion method to the Heisenberg equations of motion up to first, second, and third order. We benchmark the method by comparing it with exact solutions for specific situations and show that it can accurately represent dynamics for many parameter ranges.</description><subject>Emitters</subject><subject>Equations of motion</subject><subject>Exact solutions</subject><subject>Material properties</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Photonics</subject><subject>Physics</subject><subject>Spectral emittance</subject><subject>Transport properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOo4u_AEJuFGhx7w6nSxl8AUDbnTdpDuJk6EfY5IG3fkP_qFfYpoZXbhwU0VVHS51LwAnGM0w4vQKz3JMhaTFDphgJGRWcIl2wQQhgjPJET8AhyGsEEK4IGwfHFAsuZCMT4CeD-3QqC5C87ZWXXB9B23vYVwaGL1RsTXp1lvYuJdl_Pr4bFWMxkPXparqmPiQBqh85aJX_h0mwHinGhiiH-o4eBOOwJ5VTTDH2z4Fz7c3T_P7bPF49zC_XmQ1FTRmhhRaV5oShgtETI6JrHKOqLWiJoJiLVTBqOWSIYaFtrnVybOsxLjCVtMpON_orn3_OpgQy9aF2jTJn-mHUBLKGCGCoDyhZ3_QVT_4Ln03UojlhUw_TcHFhqp9H4I3tlx71yaXJUblGH2Jy230iT3dKg5Va_Qv-ZN1Ai43QKhdVGNy_6h9A08IjNA</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Sánchez-Barquilla, M.</creator><creator>Silva, R. E. F.</creator><creator>Feist, J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1920-5861</orcidid><orcidid>https://orcid.org/0000-0002-7972-0646</orcidid><orcidid>https://orcid.org/0000000279720646</orcidid><orcidid>https://orcid.org/0000000219205861</orcidid></search><sort><creationdate>20200121</creationdate><title>Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures</title><author>Sánchez-Barquilla, M. ; Silva, R. E. F. ; Feist, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e27ddbd3241702e5129b5603ff8c2831d8a743f6940418df5fd9379b8f6941fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Emitters</topic><topic>Equations of motion</topic><topic>Exact solutions</topic><topic>Material properties</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Photonics</topic><topic>Physics</topic><topic>Spectral emittance</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Barquilla, M.</creatorcontrib><creatorcontrib>Silva, R. E. F.</creatorcontrib><creatorcontrib>Feist, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Barquilla, M.</au><au>Silva, R. E. F.</au><au>Feist, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>152</volume><issue>3</issue><spage>034108</spage><epage>034108</epage><pages>034108-034108</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chemical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon. However, a full theoretical description of both matter and light is an extremely challenging task. Typical theoretical approaches simplify the description of the photonic environment by describing it as a single mode or few modes. While this approximation is accurate in some cases, it breaks down strongly in complex environments, such as within plasmonic nanocavities, and the electromagnetic environment must be fully taken into account. This requires the quantum description of a continuum of bosonic modes, a problem that is computationally hard. We here investigate a compromise where the quantum character of light is taken into account at modest computational cost. To do so, we focus on a quantum emitter that interacts with an arbitrary photonic spectral density and employ the cumulant, or cluster, expansion method to the Heisenberg equations of motion up to first, second, and third order. We benchmark the method by comparing it with exact solutions for specific situations and show that it can accurately represent dynamics for many parameter ranges.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31968946</pmid><doi>10.1063/1.5138937</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1920-5861</orcidid><orcidid>https://orcid.org/0000-0002-7972-0646</orcidid><orcidid>https://orcid.org/0000000279720646</orcidid><orcidid>https://orcid.org/0000000219205861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-01, Vol.152 (3), p.034108-034108 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2340457938 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Emitters Equations of motion Exact solutions Material properties Optical properties Organic chemistry Photonics Physics Spectral emittance Transport properties |
title | Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulant%20expansion%20for%20the%20treatment%20of%20light%E2%80%93matter%20interactions%20in%20arbitrary%20material%20structures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=S%C3%A1nchez-Barquilla,%20M.&rft.date=2020-01-21&rft.volume=152&rft.issue=3&rft.spage=034108&rft.epage=034108&rft.pages=034108-034108&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5138937&rft_dat=%3Cproquest_cross%3E2340457938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2340457938&rft_id=info:pmid/31968946&rfr_iscdi=true |