Mass-conserving tempered fractional diffusion in a bounded interval

Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation. A reflecting boundary condition enforces mass conservation on a bounded interval. In this work, explicit and implicit Euler schemes for tempered fractional diffusion with discrete reflecting or absorbing bounda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2019-12, Vol.22 (6), p.1561-1595
Hauptverfasser: Lischke, Anna, Kelly, James F., Meerschaert, Mark M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1595
container_issue 6
container_start_page 1561
container_title Fractional calculus & applied analysis
container_volume 22
creator Lischke, Anna
Kelly, James F.
Meerschaert, Mark M.
description Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation. A reflecting boundary condition enforces mass conservation on a bounded interval. In this work, explicit and implicit Euler schemes for tempered fractional diffusion with discrete reflecting or absorbing boundary conditions are constructed. Discrete reflecting boundaries are formulated such that the Euler schemes conserve mass. Conditional stability of the explicit Euler methods and unconditional stability of the implicit Euler methods are established. Analytical steady-state solutions involving the Mittag-Leffler function are derived and shown to be consistent with late-time numerical solutions. Several numerical examples are presented to demonstrate the accuracy and usefulness of the proposed numerical schemes.
doi_str_mv 10.1515/fca-2019-0081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2340236678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340236678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-33852e71d9ea8ecf89675d63cde931e591ac7d440d239c68907db9f05690a40c3</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWGqX7gdcp-Y9CbiR4gsqbnQd0jzKlGmmJjNK_70ZR3AjmE2-xTk3Nx8AlxgtMcf8OlgDCcIKIiTxCZhhihkkhLDT74whYpydg0XOO1SOJAIpOQOrZ5MztF3MPn00cVv1fn_wybsqJGP7poumrVwTwpBLrppYmWrTDdEVool9kUx7Ac6CabNf_Nxz8HZ_97p6hOuXh6fV7RpayuseUio58TV2yhvpbZBK1NwJap1XFHuusLG1Yww5QpUVUqHabVRAXChkGLJ0Dq6muYfUvQ8-93rXDaksmDWhDBEqRC0LBSfKpi7n5IM-pGZv0lFjpMeqdKlKj1XpsarC30z8p2nLf5zfpuFYwu_wPz1CBOZi1JeTnsszcfuvR78AK_59yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340236678</pqid></control><display><type>article</type><title>Mass-conserving tempered fractional diffusion in a bounded interval</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lischke, Anna ; Kelly, James F. ; Meerschaert, Mark M.</creator><creatorcontrib>Lischke, Anna ; Kelly, James F. ; Meerschaert, Mark M.</creatorcontrib><description>Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation. A reflecting boundary condition enforces mass conservation on a bounded interval. In this work, explicit and implicit Euler schemes for tempered fractional diffusion with discrete reflecting or absorbing boundary conditions are constructed. Discrete reflecting boundaries are formulated such that the Euler schemes conserve mass. Conditional stability of the explicit Euler methods and unconditional stability of the implicit Euler methods are established. Analytical steady-state solutions involving the Mittag-Leffler function are derived and shown to be consistent with late-time numerical solutions. Several numerical examples are presented to demonstrate the accuracy and usefulness of the proposed numerical schemes.</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2019-0081</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>33E12 ; 65N12 ; Abstract Harmonic Analysis ; Analysis ; Boundary conditions ; Diffusion ; discrete reflecting boundary conditions ; finite difference methods ; Functional Analysis ; Integral Transforms ; Mathematics ; Operational Calculus ; Primary 26A33 ; Research Paper ; Secondary 65M06 ; Stability analysis ; tempered fractional derivatives</subject><ispartof>Fractional calculus &amp; applied analysis, 2019-12, Vol.22 (6), p.1561-1595</ispartof><rights>Diogenes Co., Sofia 2019</rights><rights>2019 Diogenes Co., Sofia</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-33852e71d9ea8ecf89675d63cde931e591ac7d440d239c68907db9f05690a40c3</citedby><cites>FETCH-LOGICAL-c357t-33852e71d9ea8ecf89675d63cde931e591ac7d440d239c68907db9f05690a40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2019-0081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2019-0081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lischke, Anna</creatorcontrib><creatorcontrib>Kelly, James F.</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><title>Mass-conserving tempered fractional diffusion in a bounded interval</title><title>Fractional calculus &amp; applied analysis</title><addtitle>FCAA</addtitle><description>Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation. A reflecting boundary condition enforces mass conservation on a bounded interval. In this work, explicit and implicit Euler schemes for tempered fractional diffusion with discrete reflecting or absorbing boundary conditions are constructed. Discrete reflecting boundaries are formulated such that the Euler schemes conserve mass. Conditional stability of the explicit Euler methods and unconditional stability of the implicit Euler methods are established. Analytical steady-state solutions involving the Mittag-Leffler function are derived and shown to be consistent with late-time numerical solutions. Several numerical examples are presented to demonstrate the accuracy and usefulness of the proposed numerical schemes.</description><subject>33E12</subject><subject>65N12</subject><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Diffusion</subject><subject>discrete reflecting boundary conditions</subject><subject>finite difference methods</subject><subject>Functional Analysis</subject><subject>Integral Transforms</subject><subject>Mathematics</subject><subject>Operational Calculus</subject><subject>Primary 26A33</subject><subject>Research Paper</subject><subject>Secondary 65M06</subject><subject>Stability analysis</subject><subject>tempered fractional derivatives</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkEtLAzEURoMoWGqX7gdcp-Y9CbiR4gsqbnQd0jzKlGmmJjNK_70ZR3AjmE2-xTk3Nx8AlxgtMcf8OlgDCcIKIiTxCZhhihkkhLDT74whYpydg0XOO1SOJAIpOQOrZ5MztF3MPn00cVv1fn_wybsqJGP7poumrVwTwpBLrppYmWrTDdEVool9kUx7Ac6CabNf_Nxz8HZ_97p6hOuXh6fV7RpayuseUio58TV2yhvpbZBK1NwJap1XFHuusLG1Yww5QpUVUqHabVRAXChkGLJ0Dq6muYfUvQ8-93rXDaksmDWhDBEqRC0LBSfKpi7n5IM-pGZv0lFjpMeqdKlKj1XpsarC30z8p2nLf5zfpuFYwu_wPz1CBOZi1JeTnsszcfuvR78AK_59yw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Lischke, Anna</creator><creator>Kelly, James F.</creator><creator>Meerschaert, Mark M.</creator><general>Versita</general><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191201</creationdate><title>Mass-conserving tempered fractional diffusion in a bounded interval</title><author>Lischke, Anna ; Kelly, James F. ; Meerschaert, Mark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-33852e71d9ea8ecf89675d63cde931e591ac7d440d239c68907db9f05690a40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>33E12</topic><topic>65N12</topic><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Diffusion</topic><topic>discrete reflecting boundary conditions</topic><topic>finite difference methods</topic><topic>Functional Analysis</topic><topic>Integral Transforms</topic><topic>Mathematics</topic><topic>Operational Calculus</topic><topic>Primary 26A33</topic><topic>Research Paper</topic><topic>Secondary 65M06</topic><topic>Stability analysis</topic><topic>tempered fractional derivatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lischke, Anna</creatorcontrib><creatorcontrib>Kelly, James F.</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fractional calculus &amp; applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lischke, Anna</au><au>Kelly, James F.</au><au>Meerschaert, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass-conserving tempered fractional diffusion in a bounded interval</atitle><jtitle>Fractional calculus &amp; applied analysis</jtitle><stitle>FCAA</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>22</volume><issue>6</issue><spage>1561</spage><epage>1595</epage><pages>1561-1595</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation. A reflecting boundary condition enforces mass conservation on a bounded interval. In this work, explicit and implicit Euler schemes for tempered fractional diffusion with discrete reflecting or absorbing boundary conditions are constructed. Discrete reflecting boundaries are formulated such that the Euler schemes conserve mass. Conditional stability of the explicit Euler methods and unconditional stability of the implicit Euler methods are established. Analytical steady-state solutions involving the Mittag-Leffler function are derived and shown to be consistent with late-time numerical solutions. Several numerical examples are presented to demonstrate the accuracy and usefulness of the proposed numerical schemes.</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2019-0081</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1311-0454
ispartof Fractional calculus & applied analysis, 2019-12, Vol.22 (6), p.1561-1595
issn 1311-0454
1314-2224
language eng
recordid cdi_proquest_journals_2340236678
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects 33E12
65N12
Abstract Harmonic Analysis
Analysis
Boundary conditions
Diffusion
discrete reflecting boundary conditions
finite difference methods
Functional Analysis
Integral Transforms
Mathematics
Operational Calculus
Primary 26A33
Research Paper
Secondary 65M06
Stability analysis
tempered fractional derivatives
title Mass-conserving tempered fractional diffusion in a bounded interval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass-conserving%20tempered%20fractional%20diffusion%20in%20a%20bounded%20interval&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Lischke,%20Anna&rft.date=2019-12-01&rft.volume=22&rft.issue=6&rft.spage=1561&rft.epage=1595&rft.pages=1561-1595&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2019-0081&rft_dat=%3Cproquest_cross%3E2340236678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2340236678&rft_id=info:pmid/&rfr_iscdi=true