Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules

In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-02, Vol.43 (3), p.1380-1398
Hauptverfasser: Masjed‐Jamei, Mohammad, Moalemi, Zahra, Srivastava, Hari M., Area, Iván
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 3
container_start_page 1380
container_title Mathematical methods in the applied sciences
container_volume 43
creator Masjed‐Jamei, Mohammad
Moalemi, Zahra
Srivastava, Hari M.
Area, Iván
description In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.
doi_str_mv 10.1002/mma.5954
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2340170868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340170868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj42uznWYq3Q4kEFbyG7ybpbmqZNdim9-Qg-o0_i1nr1NDDzY4b5I3RNYEQA6J1zepTKlJ-gAQEpE8IzcYoGQDJIOCX8HF3EuASAnBA6QO8v3lnsvGmqxho8NtrF78-vex3ryoe2xs62tTcRFzr2827j17itLd7Z5qNu-87MBte0Fm87bYJuu2Bx6FY2XqKzSq-ivfqrQ_Q2fXidzJL58-PTZDxPSioZTwyhgrEMpKWsymSas7KgGkALXmZCaCMYMRRYVXEChU5JXmSSFVoYkFyAZEN0c9y7CX7b2diqpe_Cuj-pKOOHt3OR9-r2qMrgYwy2UpvQOB32ioA65Kb63NQht54mR7prVnb_r1OLxfjX_wBEXG6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340170868</pqid></control><display><type>article</type><title>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</title><source>Wiley Online Library All Journals</source><creator>Masjed‐Jamei, Mohammad ; Moalemi, Zahra ; Srivastava, Hari M. ; Area, Iván</creator><creatorcontrib>Masjed‐Jamei, Mohammad ; Moalemi, Zahra ; Srivastava, Hari M. ; Area, Iván</creatorcontrib><description>In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5954</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>adams‐bashforth rule ; Cauchy problems ; Differential equations ; Graphical representations ; hermite interpolation ; initial‐value problems ; interpolation ; linear multi‐step method ; Methods ; Numerical methods ; Quadratures ; weighted hermite quadrature rule</subject><ispartof>Mathematical methods in the applied sciences, 2020-02, Vol.43 (3), p.1380-1398</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</citedby><cites>FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</cites><orcidid>0000-0003-0872-5017 ; 0000-0002-4007-7075 ; 0000-0002-9277-8092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5954$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5954$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Masjed‐Jamei, Mohammad</creatorcontrib><creatorcontrib>Moalemi, Zahra</creatorcontrib><creatorcontrib>Srivastava, Hari M.</creatorcontrib><creatorcontrib>Area, Iván</creatorcontrib><title>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.</description><subject>adams‐bashforth rule</subject><subject>Cauchy problems</subject><subject>Differential equations</subject><subject>Graphical representations</subject><subject>hermite interpolation</subject><subject>initial‐value problems</subject><subject>interpolation</subject><subject>linear multi‐step method</subject><subject>Methods</subject><subject>Numerical methods</subject><subject>Quadratures</subject><subject>weighted hermite quadrature rule</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj42uznWYq3Q4kEFbyG7ybpbmqZNdim9-Qg-o0_i1nr1NDDzY4b5I3RNYEQA6J1zepTKlJ-gAQEpE8IzcYoGQDJIOCX8HF3EuASAnBA6QO8v3lnsvGmqxho8NtrF78-vex3ryoe2xs62tTcRFzr2827j17itLd7Z5qNu-87MBte0Fm87bYJuu2Bx6FY2XqKzSq-ivfqrQ_Q2fXidzJL58-PTZDxPSioZTwyhgrEMpKWsymSas7KgGkALXmZCaCMYMRRYVXEChU5JXmSSFVoYkFyAZEN0c9y7CX7b2diqpe_Cuj-pKOOHt3OR9-r2qMrgYwy2UpvQOB32ioA65Kb63NQht54mR7prVnb_r1OLxfjX_wBEXG6R</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Masjed‐Jamei, Mohammad</creator><creator>Moalemi, Zahra</creator><creator>Srivastava, Hari M.</creator><creator>Area, Iván</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0872-5017</orcidid><orcidid>https://orcid.org/0000-0002-4007-7075</orcidid><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></search><sort><creationdate>202002</creationdate><title>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</title><author>Masjed‐Jamei, Mohammad ; Moalemi, Zahra ; Srivastava, Hari M. ; Area, Iván</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adams‐bashforth rule</topic><topic>Cauchy problems</topic><topic>Differential equations</topic><topic>Graphical representations</topic><topic>hermite interpolation</topic><topic>initial‐value problems</topic><topic>interpolation</topic><topic>linear multi‐step method</topic><topic>Methods</topic><topic>Numerical methods</topic><topic>Quadratures</topic><topic>weighted hermite quadrature rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masjed‐Jamei, Mohammad</creatorcontrib><creatorcontrib>Moalemi, Zahra</creatorcontrib><creatorcontrib>Srivastava, Hari M.</creatorcontrib><creatorcontrib>Area, Iván</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masjed‐Jamei, Mohammad</au><au>Moalemi, Zahra</au><au>Srivastava, Hari M.</au><au>Area, Iván</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-02</date><risdate>2020</risdate><volume>43</volume><issue>3</issue><spage>1380</spage><epage>1398</epage><pages>1380-1398</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5954</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0872-5017</orcidid><orcidid>https://orcid.org/0000-0002-4007-7075</orcidid><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-02, Vol.43 (3), p.1380-1398
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2340170868
source Wiley Online Library All Journals
subjects adams‐bashforth rule
Cauchy problems
Differential equations
Graphical representations
hermite interpolation
initial‐value problems
interpolation
linear multi‐step method
Methods
Numerical methods
Quadratures
weighted hermite quadrature rule
title Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20modified%20Adams%E2%80%90Bashforth%20methods%20based%20upon%20the%20weighted%20Hermite%20quadrature%20rules&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Masjed%E2%80%90Jamei,%20Mohammad&rft.date=2020-02&rft.volume=43&rft.issue=3&rft.spage=1380&rft.epage=1398&rft.pages=1380-1398&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5954&rft_dat=%3Cproquest_cross%3E2340170868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2340170868&rft_id=info:pmid/&rfr_iscdi=true