Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules
In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-02, Vol.43 (3), p.1380-1398 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1398 |
---|---|
container_issue | 3 |
container_start_page | 1380 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Masjed‐Jamei, Mohammad Moalemi, Zahra Srivastava, Hari M. Area, Iván |
description | In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared. |
doi_str_mv | 10.1002/mma.5954 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2340170868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340170868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj42uznWYq3Q4kEFbyG7ybpbmqZNdim9-Qg-o0_i1nr1NDDzY4b5I3RNYEQA6J1zepTKlJ-gAQEpE8IzcYoGQDJIOCX8HF3EuASAnBA6QO8v3lnsvGmqxho8NtrF78-vex3ryoe2xs62tTcRFzr2827j17itLd7Z5qNu-87MBte0Fm87bYJuu2Bx6FY2XqKzSq-ivfqrQ_Q2fXidzJL58-PTZDxPSioZTwyhgrEMpKWsymSas7KgGkALXmZCaCMYMRRYVXEChU5JXmSSFVoYkFyAZEN0c9y7CX7b2diqpe_Cuj-pKOOHt3OR9-r2qMrgYwy2UpvQOB32ioA65Kb63NQht54mR7prVnb_r1OLxfjX_wBEXG6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340170868</pqid></control><display><type>article</type><title>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</title><source>Wiley Online Library All Journals</source><creator>Masjed‐Jamei, Mohammad ; Moalemi, Zahra ; Srivastava, Hari M. ; Area, Iván</creator><creatorcontrib>Masjed‐Jamei, Mohammad ; Moalemi, Zahra ; Srivastava, Hari M. ; Area, Iván</creatorcontrib><description>In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5954</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>adams‐bashforth rule ; Cauchy problems ; Differential equations ; Graphical representations ; hermite interpolation ; initial‐value problems ; interpolation ; linear multi‐step method ; Methods ; Numerical methods ; Quadratures ; weighted hermite quadrature rule</subject><ispartof>Mathematical methods in the applied sciences, 2020-02, Vol.43 (3), p.1380-1398</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</citedby><cites>FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</cites><orcidid>0000-0003-0872-5017 ; 0000-0002-4007-7075 ; 0000-0002-9277-8092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5954$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5954$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Masjed‐Jamei, Mohammad</creatorcontrib><creatorcontrib>Moalemi, Zahra</creatorcontrib><creatorcontrib>Srivastava, Hari M.</creatorcontrib><creatorcontrib>Area, Iván</creatorcontrib><title>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.</description><subject>adams‐bashforth rule</subject><subject>Cauchy problems</subject><subject>Differential equations</subject><subject>Graphical representations</subject><subject>hermite interpolation</subject><subject>initial‐value problems</subject><subject>interpolation</subject><subject>linear multi‐step method</subject><subject>Methods</subject><subject>Numerical methods</subject><subject>Quadratures</subject><subject>weighted hermite quadrature rule</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj42uznWYq3Q4kEFbyG7ybpbmqZNdim9-Qg-o0_i1nr1NDDzY4b5I3RNYEQA6J1zepTKlJ-gAQEpE8IzcYoGQDJIOCX8HF3EuASAnBA6QO8v3lnsvGmqxho8NtrF78-vex3ryoe2xs62tTcRFzr2827j17itLd7Z5qNu-87MBte0Fm87bYJuu2Bx6FY2XqKzSq-ivfqrQ_Q2fXidzJL58-PTZDxPSioZTwyhgrEMpKWsymSas7KgGkALXmZCaCMYMRRYVXEChU5JXmSSFVoYkFyAZEN0c9y7CX7b2diqpe_Cuj-pKOOHt3OR9-r2qMrgYwy2UpvQOB32ioA65Kb63NQht54mR7prVnb_r1OLxfjX_wBEXG6R</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Masjed‐Jamei, Mohammad</creator><creator>Moalemi, Zahra</creator><creator>Srivastava, Hari M.</creator><creator>Area, Iván</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0872-5017</orcidid><orcidid>https://orcid.org/0000-0002-4007-7075</orcidid><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></search><sort><creationdate>202002</creationdate><title>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</title><author>Masjed‐Jamei, Mohammad ; Moalemi, Zahra ; Srivastava, Hari M. ; Area, Iván</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-d12633709e23f79583cb2a00a64c766ad631d203ff410ba518b793ba6d0946093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adams‐bashforth rule</topic><topic>Cauchy problems</topic><topic>Differential equations</topic><topic>Graphical representations</topic><topic>hermite interpolation</topic><topic>initial‐value problems</topic><topic>interpolation</topic><topic>linear multi‐step method</topic><topic>Methods</topic><topic>Numerical methods</topic><topic>Quadratures</topic><topic>weighted hermite quadrature rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masjed‐Jamei, Mohammad</creatorcontrib><creatorcontrib>Moalemi, Zahra</creatorcontrib><creatorcontrib>Srivastava, Hari M.</creatorcontrib><creatorcontrib>Area, Iván</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masjed‐Jamei, Mohammad</au><au>Moalemi, Zahra</au><au>Srivastava, Hari M.</au><au>Area, Iván</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-02</date><risdate>2020</risdate><volume>43</volume><issue>3</issue><spage>1380</spage><epage>1398</epage><pages>1380-1398</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams‐Bashforth methods for solving initial‐value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton‐Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5954</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0872-5017</orcidid><orcidid>https://orcid.org/0000-0002-4007-7075</orcidid><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-02, Vol.43 (3), p.1380-1398 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2340170868 |
source | Wiley Online Library All Journals |
subjects | adams‐bashforth rule Cauchy problems Differential equations Graphical representations hermite interpolation initial‐value problems interpolation linear multi‐step method Methods Numerical methods Quadratures weighted hermite quadrature rule |
title | Some modified Adams‐Bashforth methods based upon the weighted Hermite quadrature rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20modified%20Adams%E2%80%90Bashforth%20methods%20based%20upon%20the%20weighted%20Hermite%20quadrature%20rules&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Masjed%E2%80%90Jamei,%20Mohammad&rft.date=2020-02&rft.volume=43&rft.issue=3&rft.spage=1380&rft.epage=1398&rft.pages=1380-1398&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5954&rft_dat=%3Cproquest_cross%3E2340170868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2340170868&rft_id=info:pmid/&rfr_iscdi=true |