Uncertain Context: Uncertainty Quantification in Machine Learning
Machine learning and artificial intelligence will be deeply embedded in the intelligent systems humans use to automate tasking, optimize planning, and support decision‐making. However, many of these methods can be challenged by dynamic computational contexts, resulting in uncertainty in prediction e...
Gespeichert in:
Veröffentlicht in: | The AI magazine 2019-12, Vol.40 (4), p.40-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 4 |
container_start_page | 40 |
container_title | The AI magazine |
container_volume | 40 |
creator | Jalaian, Brian Lee, Michael Russell, Stephen |
description | Machine learning and artificial intelligence will be deeply embedded in the intelligent systems humans use to automate tasking, optimize planning, and support decision‐making. However, many of these methods can be challenged by dynamic computational contexts, resulting in uncertainty in prediction errors and overall system outputs. Therefore, it will be increasingly important for uncertainties in underlying learning‐related computer models to be quantified and communicated. The goal of this article is to provide an accessible overview of computational context and its relationship to uncertainty quantification for machine learning, as well as to provide general suggestions on how to implement uncertainty quantification when doing statistical learning. Specifically, we will discuss the challenge of quantifying uncertainty in predictions using popular machine learning models. We present several sources of uncertainty and their implications on statistical models and subsequent machine learning predictions. |
doi_str_mv | 10.1609/aimag.v40i4.4812 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2339950923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612802010</galeid><sourcerecordid>A612802010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5990-52c653a132b1c8842d9554324783cefb4bd63c5b30e9b02ae86c51a5fe67f9793</originalsourceid><addsrcrecordid>eNqV0u9rGyEcBnAZGyzr9n4vD_ZqsMu-6unp3l1DmwWyjf3oa_GMd7UkXqfe1vz3tb1RFgisQ1CQz6OgD0KvMcwxB_leu53u578qcNW8Epg8QTNCa1xKTvBTNIOairLiQJ6jFzFeAQAXlM9Qc-GNDUk7XywGn-xN-lA8bKV98XXUPrnOGZ3c4IvMPmlz6bwt1lYH73z_Ej3r9DbaV3_WE3RxfvZj8bFcf1muFs26NExKKBkxnFGNKWmxEaIiG8lYRUlVC2ps11bthlPDWgpWtkC0FdwwrFlned3JWtIT9GY69zoMP0cbk7oaxuDzlYpQKiUDmdcH1eutVc53Qwra7Fw0quGYCCCAIavyiOqtt0FvB287l7cP_PyIz2Njd84cDbw9CJjpbXs9xqhW37_9h_38eHu6fLQVy_WhffeXbceYfzjmKbr-MsUpcsBh4iYMMQbbqeuQ-xf2CoO6q6O6r6O6r6O6q2OOyCnyOz_V_p9eNU2zOj0HYBToLYEC3p8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339950923</pqid></control><display><type>article</type><title>Uncertain Context: Uncertainty Quantification in Machine Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jalaian, Brian ; Lee, Michael ; Russell, Stephen</creator><creatorcontrib>Jalaian, Brian ; Lee, Michael ; Russell, Stephen</creatorcontrib><description>Machine learning and artificial intelligence will be deeply embedded in the intelligent systems humans use to automate tasking, optimize planning, and support decision‐making. However, many of these methods can be challenged by dynamic computational contexts, resulting in uncertainty in prediction errors and overall system outputs. Therefore, it will be increasingly important for uncertainties in underlying learning‐related computer models to be quantified and communicated. The goal of this article is to provide an accessible overview of computational context and its relationship to uncertainty quantification for machine learning, as well as to provide general suggestions on how to implement uncertainty quantification when doing statistical learning. Specifically, we will discuss the challenge of quantifying uncertainty in predictions using popular machine learning models. We present several sources of uncertainty and their implications on statistical models and subsequent machine learning predictions.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1609/aimag.v40i4.4812</identifier><language>eng</language><publisher>La Canada: American Association for Artificial Intelligence</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Decision making ; Embedded systems ; Intelligent systems ; Machine learning ; Optimization ; Statistical models ; Uncertainty</subject><ispartof>The AI magazine, 2019-12, Vol.40 (4), p.40-49</ispartof><rights>2019 The Authors. AI Magazine published by John Wiley & Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence</rights><rights>COPYRIGHT 2019 American Association for Artificial Intelligence</rights><rights>Copyright Association for the Advancement of Artificial Intelligence Winter 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5990-52c653a132b1c8842d9554324783cefb4bd63c5b30e9b02ae86c51a5fe67f9793</citedby><cites>FETCH-LOGICAL-c5990-52c653a132b1c8842d9554324783cefb4bd63c5b30e9b02ae86c51a5fe67f9793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jalaian, Brian</creatorcontrib><creatorcontrib>Lee, Michael</creatorcontrib><creatorcontrib>Russell, Stephen</creatorcontrib><title>Uncertain Context: Uncertainty Quantification in Machine Learning</title><title>The AI magazine</title><description>Machine learning and artificial intelligence will be deeply embedded in the intelligent systems humans use to automate tasking, optimize planning, and support decision‐making. However, many of these methods can be challenged by dynamic computational contexts, resulting in uncertainty in prediction errors and overall system outputs. Therefore, it will be increasingly important for uncertainties in underlying learning‐related computer models to be quantified and communicated. The goal of this article is to provide an accessible overview of computational context and its relationship to uncertainty quantification for machine learning, as well as to provide general suggestions on how to implement uncertainty quantification when doing statistical learning. Specifically, we will discuss the challenge of quantifying uncertainty in predictions using popular machine learning models. We present several sources of uncertainty and their implications on statistical models and subsequent machine learning predictions.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Decision making</subject><subject>Embedded systems</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Statistical models</subject><subject>Uncertainty</subject><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqV0u9rGyEcBnAZGyzr9n4vD_ZqsMu-6unp3l1DmwWyjf3oa_GMd7UkXqfe1vz3tb1RFgisQ1CQz6OgD0KvMcwxB_leu53u578qcNW8Epg8QTNCa1xKTvBTNIOairLiQJ6jFzFeAQAXlM9Qc-GNDUk7XywGn-xN-lA8bKV98XXUPrnOGZ3c4IvMPmlz6bwt1lYH73z_Ej3r9DbaV3_WE3RxfvZj8bFcf1muFs26NExKKBkxnFGNKWmxEaIiG8lYRUlVC2ps11bthlPDWgpWtkC0FdwwrFlned3JWtIT9GY69zoMP0cbk7oaxuDzlYpQKiUDmdcH1eutVc53Qwra7Fw0quGYCCCAIavyiOqtt0FvB287l7cP_PyIz2Njd84cDbw9CJjpbXs9xqhW37_9h_38eHu6fLQVy_WhffeXbceYfzjmKbr-MsUpcsBh4iYMMQbbqeuQ-xf2CoO6q6O6r6O6r6O6q2OOyCnyOz_V_p9eNU2zOj0HYBToLYEC3p8</recordid><startdate>20191222</startdate><enddate>20191222</enddate><creator>Jalaian, Brian</creator><creator>Lee, Michael</creator><creator>Russell, Stephen</creator><general>American Association for Artificial Intelligence</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8GL</scope><scope>IBG</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20191222</creationdate><title>Uncertain Context: Uncertainty Quantification in Machine Learning</title><author>Jalaian, Brian ; Lee, Michael ; Russell, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5990-52c653a132b1c8842d9554324783cefb4bd63c5b30e9b02ae86c51a5fe67f9793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Decision making</topic><topic>Embedded systems</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Statistical models</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalaian, Brian</creatorcontrib><creatorcontrib>Lee, Michael</creatorcontrib><creatorcontrib>Russell, Stephen</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalaian, Brian</au><au>Lee, Michael</au><au>Russell, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertain Context: Uncertainty Quantification in Machine Learning</atitle><jtitle>The AI magazine</jtitle><date>2019-12-22</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>40</spage><epage>49</epage><pages>40-49</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>Machine learning and artificial intelligence will be deeply embedded in the intelligent systems humans use to automate tasking, optimize planning, and support decision‐making. However, many of these methods can be challenged by dynamic computational contexts, resulting in uncertainty in prediction errors and overall system outputs. Therefore, it will be increasingly important for uncertainties in underlying learning‐related computer models to be quantified and communicated. The goal of this article is to provide an accessible overview of computational context and its relationship to uncertainty quantification for machine learning, as well as to provide general suggestions on how to implement uncertainty quantification when doing statistical learning. Specifically, we will discuss the challenge of quantifying uncertainty in predictions using popular machine learning models. We present several sources of uncertainty and their implications on statistical models and subsequent machine learning predictions.</abstract><cop>La Canada</cop><pub>American Association for Artificial Intelligence</pub><doi>10.1609/aimag.v40i4.4812</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0738-4602 |
ispartof | The AI magazine, 2019-12, Vol.40 (4), p.40-49 |
issn | 0738-4602 2371-9621 |
language | eng |
recordid | cdi_proquest_journals_2339950923 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Automation Decision making Embedded systems Intelligent systems Machine learning Optimization Statistical models Uncertainty |
title | Uncertain Context: Uncertainty Quantification in Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertain%20Context:%20Uncertainty%20Quantification%20in%20Machine%20Learning&rft.jtitle=The%20AI%20magazine&rft.au=Jalaian,%20Brian&rft.date=2019-12-22&rft.volume=40&rft.issue=4&rft.spage=40&rft.epage=49&rft.pages=40-49&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1609/aimag.v40i4.4812&rft_dat=%3Cgale_proqu%3EA612802010%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339950923&rft_id=info:pmid/&rft_galeid=A612802010&rfr_iscdi=true |