Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation
The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimizatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2020-01, Vol.16 (1), p.488-500 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 1 |
container_start_page | 488 |
container_title | IEEE transactions on industrial informatics |
container_volume | 16 |
creator | Zheng, Jianwei Qin, Mengjie Zhou, Xiaolong Mao, Jiafa Yu, Hongchuan |
description | The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms. |
doi_str_mv | 10.1109/TII.2019.2916986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2339372869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8715683</ieee_id><sourcerecordid>2339372869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</originalsourceid><addsrcrecordid>eNo9UE1PAjEUbIwmIno38dLE8679oN32SAjiJhgSguemLK9YhN21WwL-e4sQT2-SN_Nm3iD0SElOKdEvi7LMGaE6Z5pKreQV6lE9oBkhglwnLATNOCP8Ft113YYQXhCue2g2ds5XHuqIy127hV1CNvqmxo3Di7CvKxthhedwAL_-jL5e42lzyOa2_sLvNgZ_xMO2Dc3R7_5k9-jG2W0HD5fZRx-v48XoLZvOJuVoOM0qznnMVoPKLivJtLApoOYgXbGyillZaGXBUl0IJQfMOSudBOFE-o0tKUkcDYzzPno-303e33vootk0-1AnS5O2mhdMSZ1Y5MyqQtN1AZxpQwoafgwl5lSbSbWZU23mUluSPJ0lHgD-6aqgQirOfwE6pmjb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339372869</pqid></control><display><type>article</type><title>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Jianwei ; Qin, Mengjie ; Zhou, Xiaolong ; Mao, Jiafa ; Yu, Hongchuan</creator><creatorcontrib>Zheng, Jianwei ; Qin, Mengjie ; Zhou, Xiaolong ; Mao, Jiafa ; Yu, Hongchuan</creatorcontrib><description>The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2916986</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerated proximal gradient ; Algorithms ; Approximation ; Approximation theory ; Clustering ; Computational efficiency ; Convergence ; Design optimization ; Iterative methods ; Mathematical analysis ; Matrices ; matrix completion ; Minimization ; nuclear norm minimization ; Quadratic programming ; singular value thresholding ; subspace clustering</subject><ispartof>IEEE transactions on industrial informatics, 2020-01, Vol.16 (1), p.488-500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</citedby><cites>FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</cites><orcidid>0000-0001-6350-2217 ; 0000-0001-6017-0552 ; 0000-0002-8508-7488 ; 0000-0003-0732-5169 ; 0000-0002-2777-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8715683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8715683$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Qin, Mengjie</creatorcontrib><creatorcontrib>Zhou, Xiaolong</creatorcontrib><creatorcontrib>Mao, Jiafa</creatorcontrib><creatorcontrib>Yu, Hongchuan</creatorcontrib><title>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.</description><subject>Accelerated proximal gradient</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation theory</subject><subject>Clustering</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>matrix completion</subject><subject>Minimization</subject><subject>nuclear norm minimization</subject><subject>Quadratic programming</subject><subject>singular value thresholding</subject><subject>subspace clustering</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PAjEUbIwmIno38dLE8679oN32SAjiJhgSguemLK9YhN21WwL-e4sQT2-SN_Nm3iD0SElOKdEvi7LMGaE6Z5pKreQV6lE9oBkhglwnLATNOCP8Ft113YYQXhCue2g2ds5XHuqIy127hV1CNvqmxo3Di7CvKxthhedwAL_-jL5e42lzyOa2_sLvNgZ_xMO2Dc3R7_5k9-jG2W0HD5fZRx-v48XoLZvOJuVoOM0qznnMVoPKLivJtLApoOYgXbGyillZaGXBUl0IJQfMOSudBOFE-o0tKUkcDYzzPno-303e33vootk0-1AnS5O2mhdMSZ1Y5MyqQtN1AZxpQwoafgwl5lSbSbWZU23mUluSPJ0lHgD-6aqgQirOfwE6pmjb</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Zheng, Jianwei</creator><creator>Qin, Mengjie</creator><creator>Zhou, Xiaolong</creator><creator>Mao, Jiafa</creator><creator>Yu, Hongchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6350-2217</orcidid><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-8508-7488</orcidid><orcidid>https://orcid.org/0000-0003-0732-5169</orcidid><orcidid>https://orcid.org/0000-0002-2777-8803</orcidid></search><sort><creationdate>202001</creationdate><title>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</title><author>Zheng, Jianwei ; Qin, Mengjie ; Zhou, Xiaolong ; Mao, Jiafa ; Yu, Hongchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated proximal gradient</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation theory</topic><topic>Clustering</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>matrix completion</topic><topic>Minimization</topic><topic>nuclear norm minimization</topic><topic>Quadratic programming</topic><topic>singular value thresholding</topic><topic>subspace clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Qin, Mengjie</creatorcontrib><creatorcontrib>Zhou, Xiaolong</creatorcontrib><creatorcontrib>Mao, Jiafa</creatorcontrib><creatorcontrib>Yu, Hongchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Jianwei</au><au>Qin, Mengjie</au><au>Zhou, Xiaolong</au><au>Mao, Jiafa</au><au>Yu, Hongchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>488</spage><epage>500</epage><pages>488-500</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2916986</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6350-2217</orcidid><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-8508-7488</orcidid><orcidid>https://orcid.org/0000-0003-0732-5169</orcidid><orcidid>https://orcid.org/0000-0002-2777-8803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2020-01, Vol.16 (1), p.488-500 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2339372869 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerated proximal gradient Algorithms Approximation Approximation theory Clustering Computational efficiency Convergence Design optimization Iterative methods Mathematical analysis Matrices matrix completion Minimization nuclear norm minimization Quadratic programming singular value thresholding subspace clustering |
title | Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Implementation%20of%20Truncated%20Reweighting%20Low-Rank%20Matrix%20Approximation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zheng,%20Jianwei&rft.date=2020-01&rft.volume=16&rft.issue=1&rft.spage=488&rft.epage=500&rft.pages=488-500&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2916986&rft_dat=%3Cproquest_RIE%3E2339372869%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339372869&rft_id=info:pmid/&rft_ieee_id=8715683&rfr_iscdi=true |