Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation

The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2020-01, Vol.16 (1), p.488-500
Hauptverfasser: Zheng, Jianwei, Qin, Mengjie, Zhou, Xiaolong, Mao, Jiafa, Yu, Hongchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 1
container_start_page 488
container_title IEEE transactions on industrial informatics
container_volume 16
creator Zheng, Jianwei
Qin, Mengjie
Zhou, Xiaolong
Mao, Jiafa
Yu, Hongchuan
description The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.
doi_str_mv 10.1109/TII.2019.2916986
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2339372869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8715683</ieee_id><sourcerecordid>2339372869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</originalsourceid><addsrcrecordid>eNo9UE1PAjEUbIwmIno38dLE8679oN32SAjiJhgSguemLK9YhN21WwL-e4sQT2-SN_Nm3iD0SElOKdEvi7LMGaE6Z5pKreQV6lE9oBkhglwnLATNOCP8Ft113YYQXhCue2g2ds5XHuqIy127hV1CNvqmxo3Di7CvKxthhedwAL_-jL5e42lzyOa2_sLvNgZ_xMO2Dc3R7_5k9-jG2W0HD5fZRx-v48XoLZvOJuVoOM0qznnMVoPKLivJtLApoOYgXbGyillZaGXBUl0IJQfMOSudBOFE-o0tKUkcDYzzPno-303e33vootk0-1AnS5O2mhdMSZ1Y5MyqQtN1AZxpQwoafgwl5lSbSbWZU23mUluSPJ0lHgD-6aqgQirOfwE6pmjb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339372869</pqid></control><display><type>article</type><title>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Jianwei ; Qin, Mengjie ; Zhou, Xiaolong ; Mao, Jiafa ; Yu, Hongchuan</creator><creatorcontrib>Zheng, Jianwei ; Qin, Mengjie ; Zhou, Xiaolong ; Mao, Jiafa ; Yu, Hongchuan</creatorcontrib><description>The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2916986</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerated proximal gradient ; Algorithms ; Approximation ; Approximation theory ; Clustering ; Computational efficiency ; Convergence ; Design optimization ; Iterative methods ; Mathematical analysis ; Matrices ; matrix completion ; Minimization ; nuclear norm minimization ; Quadratic programming ; singular value thresholding ; subspace clustering</subject><ispartof>IEEE transactions on industrial informatics, 2020-01, Vol.16 (1), p.488-500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</citedby><cites>FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</cites><orcidid>0000-0001-6350-2217 ; 0000-0001-6017-0552 ; 0000-0002-8508-7488 ; 0000-0003-0732-5169 ; 0000-0002-2777-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8715683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8715683$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Qin, Mengjie</creatorcontrib><creatorcontrib>Zhou, Xiaolong</creatorcontrib><creatorcontrib>Mao, Jiafa</creatorcontrib><creatorcontrib>Yu, Hongchuan</creatorcontrib><title>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.</description><subject>Accelerated proximal gradient</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation theory</subject><subject>Clustering</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>matrix completion</subject><subject>Minimization</subject><subject>nuclear norm minimization</subject><subject>Quadratic programming</subject><subject>singular value thresholding</subject><subject>subspace clustering</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PAjEUbIwmIno38dLE8679oN32SAjiJhgSguemLK9YhN21WwL-e4sQT2-SN_Nm3iD0SElOKdEvi7LMGaE6Z5pKreQV6lE9oBkhglwnLATNOCP8Ft113YYQXhCue2g2ds5XHuqIy127hV1CNvqmxo3Di7CvKxthhedwAL_-jL5e42lzyOa2_sLvNgZ_xMO2Dc3R7_5k9-jG2W0HD5fZRx-v48XoLZvOJuVoOM0qznnMVoPKLivJtLApoOYgXbGyillZaGXBUl0IJQfMOSudBOFE-o0tKUkcDYzzPno-303e33vootk0-1AnS5O2mhdMSZ1Y5MyqQtN1AZxpQwoafgwl5lSbSbWZU23mUluSPJ0lHgD-6aqgQirOfwE6pmjb</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Zheng, Jianwei</creator><creator>Qin, Mengjie</creator><creator>Zhou, Xiaolong</creator><creator>Mao, Jiafa</creator><creator>Yu, Hongchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6350-2217</orcidid><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-8508-7488</orcidid><orcidid>https://orcid.org/0000-0003-0732-5169</orcidid><orcidid>https://orcid.org/0000-0002-2777-8803</orcidid></search><sort><creationdate>202001</creationdate><title>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</title><author>Zheng, Jianwei ; Qin, Mengjie ; Zhou, Xiaolong ; Mao, Jiafa ; Yu, Hongchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d4cabc6295a00593e6f7da82a6798aea19758642ffa6f6e5f52012b10a829e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated proximal gradient</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation theory</topic><topic>Clustering</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>matrix completion</topic><topic>Minimization</topic><topic>nuclear norm minimization</topic><topic>Quadratic programming</topic><topic>singular value thresholding</topic><topic>subspace clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Qin, Mengjie</creatorcontrib><creatorcontrib>Zhou, Xiaolong</creatorcontrib><creatorcontrib>Mao, Jiafa</creatorcontrib><creatorcontrib>Yu, Hongchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Jianwei</au><au>Qin, Mengjie</au><au>Zhou, Xiaolong</au><au>Mao, Jiafa</au><au>Yu, Hongchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>488</spage><epage>500</epage><pages>488-500</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The weighted nuclear norm minimization and truncated nuclear norm minimization are two well-known low-rank constraint for visual applications. In this paper, by integrating their advantages into a unified formulation, we find a better weighting strategy, namely truncated reweighting norm minimization (TRNM), which provides better approximation to the target rank for some specific task. Albeit nonconvex and truncated, we prove that TRNM is equivalent to certain weighted quadratic programming problems, whose global optimum can be accessed by the newly presented reweighting singular value thresholding operator. More importantly, we design a computationally efficient optimization algorithm, namely momentum update and rank propagation (MURP), for the general TRNM regularized problems. The individual advantages of MURP include, first, reducing iterations through nonmonotonic search, and second, mitigating computational cost by reducing the size of target matrix. Furthermore, the descent property and convergence of MURP are proven. Finally, two practical models, i.e., Matrix Completion Problem via TRNM (MCTRNM) and Space Clustering Model via TRNM (SCTRNM), are presented for visual applications. Extensive experimental results show that our methods achieve better performance, both qualitatively and quantitatively, compared with several state-of-the-art algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2916986</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6350-2217</orcidid><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-8508-7488</orcidid><orcidid>https://orcid.org/0000-0003-0732-5169</orcidid><orcidid>https://orcid.org/0000-0002-2777-8803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-01, Vol.16 (1), p.488-500
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2339372869
source IEEE Electronic Library (IEL)
subjects Accelerated proximal gradient
Algorithms
Approximation
Approximation theory
Clustering
Computational efficiency
Convergence
Design optimization
Iterative methods
Mathematical analysis
Matrices
matrix completion
Minimization
nuclear norm minimization
Quadratic programming
singular value thresholding
subspace clustering
title Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Implementation%20of%20Truncated%20Reweighting%20Low-Rank%20Matrix%20Approximation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zheng,%20Jianwei&rft.date=2020-01&rft.volume=16&rft.issue=1&rft.spage=488&rft.epage=500&rft.pages=488-500&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2916986&rft_dat=%3Cproquest_RIE%3E2339372869%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339372869&rft_id=info:pmid/&rft_ieee_id=8715683&rfr_iscdi=true