Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations

In this letter, a novel autonomous control framework "Grid Mind" is proposed for the secure operation of power grids based on cutting-edge artificial intelligence (AI) technologies. The proposed platform provides a data-driven, model-free and closed-loop control agent trained using deep re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2020-01, Vol.35 (1), p.814-817
Hauptverfasser: Duan, Jiajun, Shi, Di, Diao, Ruisheng, Li, Haifeng, Wang, Zhiwei, Zhang, Bei, Bian, Desong, Yi, Zhehan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue 1
container_start_page 814
container_title IEEE transactions on power systems
container_volume 35
creator Duan, Jiajun
Shi, Di
Diao, Ruisheng
Li, Haifeng
Wang, Zhiwei
Zhang, Bei
Bian, Desong
Yi, Zhehan
description In this letter, a novel autonomous control framework "Grid Mind" is proposed for the secure operation of power grids based on cutting-edge artificial intelligence (AI) technologies. The proposed platform provides a data-driven, model-free and closed-loop control agent trained using deep reinforcement learning (DRL) algorithms by interacting with massive simulations and/or real environment of a power grid. The proposed agent learns from scratch to master the power grid voltage control problem purely from data. It can make autonomous voltage control (AVC) strategies to support grid operators in making effective and timely control actions, according to the current system conditions detected by real-time measurements from supervisory control and data acquisition (SCADA) or phasor measurement units (PMUs). Two state-of-the-art DRL algorithms, namely deep Q-network (DQN) and deep deterministic policy gradient (DDPG), are proposed to formulate the AVC problem with performance compared. Case studies on a realistic 200-bus test system demonstrate the effectiveness and promising performance of the proposed framework.
doi_str_mv 10.1109/TPWRS.2019.2941134
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2339345316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8834806</ieee_id><sourcerecordid>2339345316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-1f215068db24cb06662fcbdea21a040e4db1681fc8d689292f2fed8f36368d0e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxA7CJxNrFrxh7WQoUpEqtSilLy0nGVarWDnYixN-T0orVLOaeO6OD0A0lQ0qJvl_OPxfvQ0aoHjItKOXiBA1onitM5IM-RQOiVI6Vzsk5ukhpQwiR_WKAVk8ADV5A7V2IJezAt3gKNvrar_GjTVBlo64NPuxCl7JV2LZ2Ddk4-DaGbdYz2Tx8Q8wmsa6yWQPRtnXw6QqdObtNcH2cl-jj5Xk5fsXT2eRtPJriUlDSYuoYzYlUVcFEWfQvSebKogLLqCWCgKgKKhV1paqk0kwzxxxUynHJe4gAv0R3h94mhq8OUms2oYu-P2kY55qLnFPZp9ghVcaQUgRnmljvbPwxlJi9P_Pnz-z9maO_Hro9QDUA_ANKcaGI5L-Ao2zj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339345316</pqid></control><display><type>article</type><title>Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Duan, Jiajun ; Shi, Di ; Diao, Ruisheng ; Li, Haifeng ; Wang, Zhiwei ; Zhang, Bei ; Bian, Desong ; Yi, Zhehan</creator><creatorcontrib>Duan, Jiajun ; Shi, Di ; Diao, Ruisheng ; Li, Haifeng ; Wang, Zhiwei ; Zhang, Bei ; Bian, Desong ; Yi, Zhehan</creatorcontrib><description>In this letter, a novel autonomous control framework "Grid Mind" is proposed for the secure operation of power grids based on cutting-edge artificial intelligence (AI) technologies. The proposed platform provides a data-driven, model-free and closed-loop control agent trained using deep reinforcement learning (DRL) algorithms by interacting with massive simulations and/or real environment of a power grid. The proposed agent learns from scratch to master the power grid voltage control problem purely from data. It can make autonomous voltage control (AVC) strategies to support grid operators in making effective and timely control actions, according to the current system conditions detected by real-time measurements from supervisory control and data acquisition (SCADA) or phasor measurement units (PMUs). Two state-of-the-art DRL algorithms, namely deep Q-network (DQN) and deep deterministic policy gradient (DDPG), are proposed to formulate the AVC problem with performance compared. Case studies on a realistic 200-bus test system demonstrate the effectiveness and promising performance of the proposed framework.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2941134</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Automatic voltage control ; autonomous voltage control ; Computer simulation ; DDPG ; deep reinforcement learning ; DQN ; Electric potential ; Generators ; Grid Mind ; Machine learning ; Measuring instruments ; PMU ; Power grids ; Supervisory control and data acquisition ; Training ; Voltage</subject><ispartof>IEEE transactions on power systems, 2020-01, Vol.35 (1), p.814-817</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-1f215068db24cb06662fcbdea21a040e4db1681fc8d689292f2fed8f36368d0e3</citedby><cites>FETCH-LOGICAL-c410t-1f215068db24cb06662fcbdea21a040e4db1681fc8d689292f2fed8f36368d0e3</cites><orcidid>0000-0002-8009-227X ; 0000-0002-1599-7961 ; 0000-0003-4866-7499 ; 0000-0001-7041-0978 ; 0000-0002-1469-7887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8834806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8834806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duan, Jiajun</creatorcontrib><creatorcontrib>Shi, Di</creatorcontrib><creatorcontrib>Diao, Ruisheng</creatorcontrib><creatorcontrib>Li, Haifeng</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Bian, Desong</creatorcontrib><creatorcontrib>Yi, Zhehan</creatorcontrib><title>Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In this letter, a novel autonomous control framework "Grid Mind" is proposed for the secure operation of power grids based on cutting-edge artificial intelligence (AI) technologies. The proposed platform provides a data-driven, model-free and closed-loop control agent trained using deep reinforcement learning (DRL) algorithms by interacting with massive simulations and/or real environment of a power grid. The proposed agent learns from scratch to master the power grid voltage control problem purely from data. It can make autonomous voltage control (AVC) strategies to support grid operators in making effective and timely control actions, according to the current system conditions detected by real-time measurements from supervisory control and data acquisition (SCADA) or phasor measurement units (PMUs). Two state-of-the-art DRL algorithms, namely deep Q-network (DQN) and deep deterministic policy gradient (DDPG), are proposed to formulate the AVC problem with performance compared. Case studies on a realistic 200-bus test system demonstrate the effectiveness and promising performance of the proposed framework.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automatic voltage control</subject><subject>autonomous voltage control</subject><subject>Computer simulation</subject><subject>DDPG</subject><subject>deep reinforcement learning</subject><subject>DQN</subject><subject>Electric potential</subject><subject>Generators</subject><subject>Grid Mind</subject><subject>Machine learning</subject><subject>Measuring instruments</subject><subject>PMU</subject><subject>Power grids</subject><subject>Supervisory control and data acquisition</subject><subject>Training</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEuXxA7CJxNrFrxh7WQoUpEqtSilLy0nGVarWDnYixN-T0orVLOaeO6OD0A0lQ0qJvl_OPxfvQ0aoHjItKOXiBA1onitM5IM-RQOiVI6Vzsk5ukhpQwiR_WKAVk8ADV5A7V2IJezAt3gKNvrar_GjTVBlo64NPuxCl7JV2LZ2Ddk4-DaGbdYz2Tx8Q8wmsa6yWQPRtnXw6QqdObtNcH2cl-jj5Xk5fsXT2eRtPJriUlDSYuoYzYlUVcFEWfQvSebKogLLqCWCgKgKKhV1paqk0kwzxxxUynHJe4gAv0R3h94mhq8OUms2oYu-P2kY55qLnFPZp9ghVcaQUgRnmljvbPwxlJi9P_Pnz-z9maO_Hro9QDUA_ANKcaGI5L-Ao2zj</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Duan, Jiajun</creator><creator>Shi, Di</creator><creator>Diao, Ruisheng</creator><creator>Li, Haifeng</creator><creator>Wang, Zhiwei</creator><creator>Zhang, Bei</creator><creator>Bian, Desong</creator><creator>Yi, Zhehan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8009-227X</orcidid><orcidid>https://orcid.org/0000-0002-1599-7961</orcidid><orcidid>https://orcid.org/0000-0003-4866-7499</orcidid><orcidid>https://orcid.org/0000-0001-7041-0978</orcidid><orcidid>https://orcid.org/0000-0002-1469-7887</orcidid></search><sort><creationdate>202001</creationdate><title>Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations</title><author>Duan, Jiajun ; Shi, Di ; Diao, Ruisheng ; Li, Haifeng ; Wang, Zhiwei ; Zhang, Bei ; Bian, Desong ; Yi, Zhehan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-1f215068db24cb06662fcbdea21a040e4db1681fc8d689292f2fed8f36368d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automatic voltage control</topic><topic>autonomous voltage control</topic><topic>Computer simulation</topic><topic>DDPG</topic><topic>deep reinforcement learning</topic><topic>DQN</topic><topic>Electric potential</topic><topic>Generators</topic><topic>Grid Mind</topic><topic>Machine learning</topic><topic>Measuring instruments</topic><topic>PMU</topic><topic>Power grids</topic><topic>Supervisory control and data acquisition</topic><topic>Training</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Jiajun</creatorcontrib><creatorcontrib>Shi, Di</creatorcontrib><creatorcontrib>Diao, Ruisheng</creatorcontrib><creatorcontrib>Li, Haifeng</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Bian, Desong</creatorcontrib><creatorcontrib>Yi, Zhehan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duan, Jiajun</au><au>Shi, Di</au><au>Diao, Ruisheng</au><au>Li, Haifeng</au><au>Wang, Zhiwei</au><au>Zhang, Bei</au><au>Bian, Desong</au><au>Yi, Zhehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-01</date><risdate>2020</risdate><volume>35</volume><issue>1</issue><spage>814</spage><epage>817</epage><pages>814-817</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In this letter, a novel autonomous control framework "Grid Mind" is proposed for the secure operation of power grids based on cutting-edge artificial intelligence (AI) technologies. The proposed platform provides a data-driven, model-free and closed-loop control agent trained using deep reinforcement learning (DRL) algorithms by interacting with massive simulations and/or real environment of a power grid. The proposed agent learns from scratch to master the power grid voltage control problem purely from data. It can make autonomous voltage control (AVC) strategies to support grid operators in making effective and timely control actions, according to the current system conditions detected by real-time measurements from supervisory control and data acquisition (SCADA) or phasor measurement units (PMUs). Two state-of-the-art DRL algorithms, namely deep Q-network (DQN) and deep deterministic policy gradient (DDPG), are proposed to formulate the AVC problem with performance compared. Case studies on a realistic 200-bus test system demonstrate the effectiveness and promising performance of the proposed framework.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2941134</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8009-227X</orcidid><orcidid>https://orcid.org/0000-0002-1599-7961</orcidid><orcidid>https://orcid.org/0000-0003-4866-7499</orcidid><orcidid>https://orcid.org/0000-0001-7041-0978</orcidid><orcidid>https://orcid.org/0000-0002-1469-7887</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2020-01, Vol.35 (1), p.814-817
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2339345316
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Automatic voltage control
autonomous voltage control
Computer simulation
DDPG
deep reinforcement learning
DQN
Electric potential
Generators
Grid Mind
Machine learning
Measuring instruments
PMU
Power grids
Supervisory control and data acquisition
Training
Voltage
title Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Reinforcement-Learning-Based%20Autonomous%20Voltage%20Control%20for%20Power%20Grid%20Operations&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Duan,%20Jiajun&rft.date=2020-01&rft.volume=35&rft.issue=1&rft.spage=814&rft.epage=817&rft.pages=814-817&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2941134&rft_dat=%3Cproquest_RIE%3E2339345316%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339345316&rft_id=info:pmid/&rft_ieee_id=8834806&rfr_iscdi=true