Generalized [Formula Omitted]-Network: A Case for Fixed Message Dimensions
In this letter, we first present a class of networks named Generalized [Formula Omitted] -Network for every integer [Formula Omitted] and [Formula Omitted] and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of [For...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2020-01, Vol.24 (1), p.38 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | IEEE communications letters |
container_volume | 24 |
creator | Singh, Vikrant Zolfaghari, Behrouz Chunduri Venkata Dheeraj Kumar Rai, Brijesh Kumar Bibak, Khodakhast Srivastava, Gautam Swapnoneel Roy Koshiba, Takeshi |
description | In this letter, we first present a class of networks named Generalized [Formula Omitted] -Network for every integer [Formula Omitted] and [Formula Omitted] and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of [Formula Omitted]. We show that the Generalized [Formula Omitted] -Network presented in the work of Das and Rai and the Dim- [Formula Omitted] Network introduced in the work of Connelly and Zeger which are generalizations to the [Formula Omitted]-Network can be considered as special cases of Generalized [Formula Omitted]-Network for [Formula Omitted] and [Formula Omitted] respectively. Then we focus on a problem induced by depending on integer multiples of [Formula Omitted] as message dimensions to achieve the linear coding capacity in the class of Generalized [Formula Omitted] (proven to be equal to 1). We note that for large values of [Formula Omitted], packet sizes will grow beyond feasible thresholds in real-world networks. This motivates us to examine the capacity of the network in the case of fixed message dimensions. A study on the contrast among the impacts of fixed message dimensions in different networks of class [Formula Omitted]-Network highlights the importance of the examined problem. In addition to complete/partial solutions obtained for different networks of the class Generalized [Formula Omitted]-Network, our studies pose some open problems which make the Generalized [Formula Omitted]-Network an attractive topic for further research. |
doi_str_mv | 10.1109/LCOMM.2019.2950193 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2339335777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339335777</sourcerecordid><originalsourceid>FETCH-proquest_journals_23393357773</originalsourceid><addsrcrecordid>eNqNistqwzAUBUVJoXn0B7oSdG1XD4Ss7IIbJ5Q43mQXihH4pii1rVbXJqVfHy3yAdmcOTBDyAtnKefMvO3yqixTwbhJhVER8oFMuVJZIuJM4meZSbQ22ROZIZ4ZY5lQfEo-NtBDsK37h4YeCx-6sbW06twwQPOZ7GG4-PC9pCuaWwR68oEW7i-2JSDaL6DvroMene9xQR5PtkV4vnFOXov1Id8mP8H_joBDffZj6KOqhZRGSqW1lvdVV2ahQyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339335777</pqid></control><display><type>article</type><title>Generalized [Formula Omitted]-Network: A Case for Fixed Message Dimensions</title><source>IEEE Electronic Library (IEL)</source><creator>Singh, Vikrant ; Zolfaghari, Behrouz ; Chunduri Venkata Dheeraj Kumar ; Rai, Brijesh Kumar ; Bibak, Khodakhast ; Srivastava, Gautam ; Swapnoneel Roy ; Koshiba, Takeshi</creator><creatorcontrib>Singh, Vikrant ; Zolfaghari, Behrouz ; Chunduri Venkata Dheeraj Kumar ; Rai, Brijesh Kumar ; Bibak, Khodakhast ; Srivastava, Gautam ; Swapnoneel Roy ; Koshiba, Takeshi</creatorcontrib><description>In this letter, we first present a class of networks named Generalized [Formula Omitted] -Network for every integer [Formula Omitted] and [Formula Omitted] and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of [Formula Omitted]. We show that the Generalized [Formula Omitted] -Network presented in the work of Das and Rai and the Dim- [Formula Omitted] Network introduced in the work of Connelly and Zeger which are generalizations to the [Formula Omitted]-Network can be considered as special cases of Generalized [Formula Omitted]-Network for [Formula Omitted] and [Formula Omitted] respectively. Then we focus on a problem induced by depending on integer multiples of [Formula Omitted] as message dimensions to achieve the linear coding capacity in the class of Generalized [Formula Omitted] (proven to be equal to 1). We note that for large values of [Formula Omitted], packet sizes will grow beyond feasible thresholds in real-world networks. This motivates us to examine the capacity of the network in the case of fixed message dimensions. A study on the contrast among the impacts of fixed message dimensions in different networks of class [Formula Omitted]-Network highlights the importance of the examined problem. In addition to complete/partial solutions obtained for different networks of the class Generalized [Formula Omitted]-Network, our studies pose some open problems which make the Generalized [Formula Omitted]-Network an attractive topic for further research.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2019.2950193</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Integers ; Networks</subject><ispartof>IEEE communications letters, 2020-01, Vol.24 (1), p.38</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Vikrant</creatorcontrib><creatorcontrib>Zolfaghari, Behrouz</creatorcontrib><creatorcontrib>Chunduri Venkata Dheeraj Kumar</creatorcontrib><creatorcontrib>Rai, Brijesh Kumar</creatorcontrib><creatorcontrib>Bibak, Khodakhast</creatorcontrib><creatorcontrib>Srivastava, Gautam</creatorcontrib><creatorcontrib>Swapnoneel Roy</creatorcontrib><creatorcontrib>Koshiba, Takeshi</creatorcontrib><title>Generalized [Formula Omitted]-Network: A Case for Fixed Message Dimensions</title><title>IEEE communications letters</title><description>In this letter, we first present a class of networks named Generalized [Formula Omitted] -Network for every integer [Formula Omitted] and [Formula Omitted] and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of [Formula Omitted]. We show that the Generalized [Formula Omitted] -Network presented in the work of Das and Rai and the Dim- [Formula Omitted] Network introduced in the work of Connelly and Zeger which are generalizations to the [Formula Omitted]-Network can be considered as special cases of Generalized [Formula Omitted]-Network for [Formula Omitted] and [Formula Omitted] respectively. Then we focus on a problem induced by depending on integer multiples of [Formula Omitted] as message dimensions to achieve the linear coding capacity in the class of Generalized [Formula Omitted] (proven to be equal to 1). We note that for large values of [Formula Omitted], packet sizes will grow beyond feasible thresholds in real-world networks. This motivates us to examine the capacity of the network in the case of fixed message dimensions. A study on the contrast among the impacts of fixed message dimensions in different networks of class [Formula Omitted]-Network highlights the importance of the examined problem. In addition to complete/partial solutions obtained for different networks of the class Generalized [Formula Omitted]-Network, our studies pose some open problems which make the Generalized [Formula Omitted]-Network an attractive topic for further research.</description><subject>Integers</subject><subject>Networks</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNistqwzAUBUVJoXn0B7oSdG1XD4Ss7IIbJ5Q43mQXihH4pii1rVbXJqVfHy3yAdmcOTBDyAtnKefMvO3yqixTwbhJhVER8oFMuVJZIuJM4meZSbQ22ROZIZ4ZY5lQfEo-NtBDsK37h4YeCx-6sbW06twwQPOZ7GG4-PC9pCuaWwR68oEW7i-2JSDaL6DvroMene9xQR5PtkV4vnFOXov1Id8mP8H_joBDffZj6KOqhZRGSqW1lvdVV2ahQyo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Singh, Vikrant</creator><creator>Zolfaghari, Behrouz</creator><creator>Chunduri Venkata Dheeraj Kumar</creator><creator>Rai, Brijesh Kumar</creator><creator>Bibak, Khodakhast</creator><creator>Srivastava, Gautam</creator><creator>Swapnoneel Roy</creator><creator>Koshiba, Takeshi</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200101</creationdate><title>Generalized [Formula Omitted]-Network: A Case for Fixed Message Dimensions</title><author>Singh, Vikrant ; Zolfaghari, Behrouz ; Chunduri Venkata Dheeraj Kumar ; Rai, Brijesh Kumar ; Bibak, Khodakhast ; Srivastava, Gautam ; Swapnoneel Roy ; Koshiba, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23393357773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Integers</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Vikrant</creatorcontrib><creatorcontrib>Zolfaghari, Behrouz</creatorcontrib><creatorcontrib>Chunduri Venkata Dheeraj Kumar</creatorcontrib><creatorcontrib>Rai, Brijesh Kumar</creatorcontrib><creatorcontrib>Bibak, Khodakhast</creatorcontrib><creatorcontrib>Srivastava, Gautam</creatorcontrib><creatorcontrib>Swapnoneel Roy</creatorcontrib><creatorcontrib>Koshiba, Takeshi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Vikrant</au><au>Zolfaghari, Behrouz</au><au>Chunduri Venkata Dheeraj Kumar</au><au>Rai, Brijesh Kumar</au><au>Bibak, Khodakhast</au><au>Srivastava, Gautam</au><au>Swapnoneel Roy</au><au>Koshiba, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized [Formula Omitted]-Network: A Case for Fixed Message Dimensions</atitle><jtitle>IEEE communications letters</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><abstract>In this letter, we first present a class of networks named Generalized [Formula Omitted] -Network for every integer [Formula Omitted] and [Formula Omitted] and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of [Formula Omitted]. We show that the Generalized [Formula Omitted] -Network presented in the work of Das and Rai and the Dim- [Formula Omitted] Network introduced in the work of Connelly and Zeger which are generalizations to the [Formula Omitted]-Network can be considered as special cases of Generalized [Formula Omitted]-Network for [Formula Omitted] and [Formula Omitted] respectively. Then we focus on a problem induced by depending on integer multiples of [Formula Omitted] as message dimensions to achieve the linear coding capacity in the class of Generalized [Formula Omitted] (proven to be equal to 1). We note that for large values of [Formula Omitted], packet sizes will grow beyond feasible thresholds in real-world networks. This motivates us to examine the capacity of the network in the case of fixed message dimensions. A study on the contrast among the impacts of fixed message dimensions in different networks of class [Formula Omitted]-Network highlights the importance of the examined problem. In addition to complete/partial solutions obtained for different networks of the class Generalized [Formula Omitted]-Network, our studies pose some open problems which make the Generalized [Formula Omitted]-Network an attractive topic for further research.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/LCOMM.2019.2950193</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2020-01, Vol.24 (1), p.38 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2339335777 |
source | IEEE Electronic Library (IEL) |
subjects | Integers Networks |
title | Generalized [Formula Omitted]-Network: A Case for Fixed Message Dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20%5BFormula%20Omitted%5D-Network:%20A%20Case%20for%20Fixed%20Message%20Dimensions&rft.jtitle=IEEE%20communications%20letters&rft.au=Singh,%20Vikrant&rft.date=2020-01-01&rft.volume=24&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=1089-7798&rft.eissn=1558-2558&rft_id=info:doi/10.1109/LCOMM.2019.2950193&rft_dat=%3Cproquest%3E2339335777%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339335777&rft_id=info:pmid/&rfr_iscdi=true |