Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)
Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain w...
Gespeichert in:
Veröffentlicht in: | Insect science 2020-04, Vol.27 (2), p.276-291 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 276 |
container_title | Insect science |
container_volume | 27 |
creator | Wang, Meng‐Yao Liu, Xin‐Yang Shi, Li Liu, Jia‐Lu Shen, Guang‐Mao Zhang, Ping Lu, Wen‐Cai He, Lin |
description | Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus. |
doi_str_mv | 10.1111/1744-7917.12637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2338883241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092533796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EoqV0zQ5FYlMWaf1KbG-QSqEPqYJFp2vrxnEYVxm72Emr-ffcYcqosMEL29f-7tGxDyHvGD1mOE6YkrJWhqljxluhXpD93clL3LeK16alZo-8KeWOUmG44a_JnqBMIK73yXg-RzeFFGGsAKd1CaVKQ3V7seCUfREVlJJcgMn31WOYlhV0sPLYEavskZ0gOl9htfBThrh2y7lULsSIXA4Ri6PPKZR-foDx41vyaoCx-MOn9YDcnn9dnF3W198vrs5Or2snW6Vq2WsmBuil6VqGTo0RstHAlJbcNdD6DoTovJDgQEnuO8e0oHIYqG6MYk4ckE9b3fu5W_ne-YjeRnufwwry2iYI9u-bGJb2R3qwSijDFUeBoyeBnH7Ovkx2FYrz4wjRp7lYTg1vBMItoh_-Qe_SnPEnkRJCay24ZEidbCmXUynZDzszjNpNknaTm93kZn8niR3vn79hx_-JDoFmCzyG0a__p2evvt1shX8BVIiouw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338883241</pqid></control><display><type>article</type><title>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Meng‐Yao ; Liu, Xin‐Yang ; Shi, Li ; Liu, Jia‐Lu ; Shen, Guang‐Mao ; Zhang, Ping ; Lu, Wen‐Cai ; He, Lin</creator><creatorcontrib>Wang, Meng‐Yao ; Liu, Xin‐Yang ; Shi, Li ; Liu, Jia‐Lu ; Shen, Guang‐Mao ; Zhang, Ping ; Lu, Wen‐Cai ; He, Lin</creatorcontrib><description>Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.</description><identifier>ISSN: 1672-9609</identifier><identifier>ISSN: 1744-7917</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.12637</identifier><identifier>PMID: 30136378</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Abamectin ; abamectin resistance ; Amino Acid Sequence ; Animals ; Biotransformation ; DNA microarrays ; E coli ; Enzymatic activity ; Enzyme activity ; Escherichia coli ; Female ; Functional analysis ; Gene silencing ; Glucuronosyltransferase - genetics ; Glucuronosyltransferase - metabolism ; Insecticide Resistance ; Insecticides ; Ivermectin - analogs & derivatives ; Lipophilic ; Liquid chromatography ; Naphthol ; Original ; prokaryotic expression ; Proteins ; RNA Interference ; Sugar ; Tetranychidae - genetics ; Tetranychidae - metabolism ; Tetranychus cinnabarinus ; UDP‐glycosyltransferases ; Uracil - analogs & derivatives ; Uridine ; Xenobiotics</subject><ispartof>Insect science, 2020-04, Vol.27 (2), p.276-291</ispartof><rights>2018 Institute of Zoology, Chinese Academy of Sciences</rights><rights>2018 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</citedby><cites>FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</cites><orcidid>0000-0002-5491-5375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1744-7917.12637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1744-7917.12637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30136378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meng‐Yao</creatorcontrib><creatorcontrib>Liu, Xin‐Yang</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Liu, Jia‐Lu</creatorcontrib><creatorcontrib>Shen, Guang‐Mao</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Lu, Wen‐Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><title>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</title><title>Insect science</title><addtitle>Insect Sci</addtitle><description>Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.</description><subject>Abamectin</subject><subject>abamectin resistance</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biotransformation</subject><subject>DNA microarrays</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Escherichia coli</subject><subject>Female</subject><subject>Functional analysis</subject><subject>Gene silencing</subject><subject>Glucuronosyltransferase - genetics</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Insecticide Resistance</subject><subject>Insecticides</subject><subject>Ivermectin - analogs & derivatives</subject><subject>Lipophilic</subject><subject>Liquid chromatography</subject><subject>Naphthol</subject><subject>Original</subject><subject>prokaryotic expression</subject><subject>Proteins</subject><subject>RNA Interference</subject><subject>Sugar</subject><subject>Tetranychidae - genetics</subject><subject>Tetranychidae - metabolism</subject><subject>Tetranychus cinnabarinus</subject><subject>UDP‐glycosyltransferases</subject><subject>Uracil - analogs & derivatives</subject><subject>Uridine</subject><subject>Xenobiotics</subject><issn>1672-9609</issn><issn>1744-7917</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EoqV0zQ5FYlMWaf1KbG-QSqEPqYJFp2vrxnEYVxm72Emr-ffcYcqosMEL29f-7tGxDyHvGD1mOE6YkrJWhqljxluhXpD93clL3LeK16alZo-8KeWOUmG44a_JnqBMIK73yXg-RzeFFGGsAKd1CaVKQ3V7seCUfREVlJJcgMn31WOYlhV0sPLYEavskZ0gOl9htfBThrh2y7lULsSIXA4Ri6PPKZR-foDx41vyaoCx-MOn9YDcnn9dnF3W198vrs5Or2snW6Vq2WsmBuil6VqGTo0RstHAlJbcNdD6DoTovJDgQEnuO8e0oHIYqG6MYk4ckE9b3fu5W_ne-YjeRnufwwry2iYI9u-bGJb2R3qwSijDFUeBoyeBnH7Ovkx2FYrz4wjRp7lYTg1vBMItoh_-Qe_SnPEnkRJCay24ZEidbCmXUynZDzszjNpNknaTm93kZn8niR3vn79hx_-JDoFmCzyG0a__p2evvt1shX8BVIiouw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Wang, Meng‐Yao</creator><creator>Liu, Xin‐Yang</creator><creator>Shi, Li</creator><creator>Liu, Jia‐Lu</creator><creator>Shen, Guang‐Mao</creator><creator>Zhang, Ping</creator><creator>Lu, Wen‐Cai</creator><creator>He, Lin</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5491-5375</orcidid></search><sort><creationdate>202004</creationdate><title>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</title><author>Wang, Meng‐Yao ; Liu, Xin‐Yang ; Shi, Li ; Liu, Jia‐Lu ; Shen, Guang‐Mao ; Zhang, Ping ; Lu, Wen‐Cai ; He, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abamectin</topic><topic>abamectin resistance</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biotransformation</topic><topic>DNA microarrays</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Escherichia coli</topic><topic>Female</topic><topic>Functional analysis</topic><topic>Gene silencing</topic><topic>Glucuronosyltransferase - genetics</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Insecticide Resistance</topic><topic>Insecticides</topic><topic>Ivermectin - analogs & derivatives</topic><topic>Lipophilic</topic><topic>Liquid chromatography</topic><topic>Naphthol</topic><topic>Original</topic><topic>prokaryotic expression</topic><topic>Proteins</topic><topic>RNA Interference</topic><topic>Sugar</topic><topic>Tetranychidae - genetics</topic><topic>Tetranychidae - metabolism</topic><topic>Tetranychus cinnabarinus</topic><topic>UDP‐glycosyltransferases</topic><topic>Uracil - analogs & derivatives</topic><topic>Uridine</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng‐Yao</creatorcontrib><creatorcontrib>Liu, Xin‐Yang</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Liu, Jia‐Lu</creatorcontrib><creatorcontrib>Shen, Guang‐Mao</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Lu, Wen‐Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng‐Yao</au><au>Liu, Xin‐Yang</au><au>Shi, Li</au><au>Liu, Jia‐Lu</au><au>Shen, Guang‐Mao</au><au>Zhang, Ping</au><au>Lu, Wen‐Cai</au><au>He, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</atitle><jtitle>Insect science</jtitle><addtitle>Insect Sci</addtitle><date>2020-04</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><spage>276</spage><epage>291</epage><pages>276-291</pages><issn>1672-9609</issn><issn>1744-7917</issn><eissn>1744-7917</eissn><abstract>Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30136378</pmid><doi>10.1111/1744-7917.12637</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5491-5375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9609 |
ispartof | Insect science, 2020-04, Vol.27 (2), p.276-291 |
issn | 1672-9609 1744-7917 1744-7917 |
language | eng |
recordid | cdi_proquest_journals_2338883241 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Abamectin abamectin resistance Amino Acid Sequence Animals Biotransformation DNA microarrays E coli Enzymatic activity Enzyme activity Escherichia coli Female Functional analysis Gene silencing Glucuronosyltransferase - genetics Glucuronosyltransferase - metabolism Insecticide Resistance Insecticides Ivermectin - analogs & derivatives Lipophilic Liquid chromatography Naphthol Original prokaryotic expression Proteins RNA Interference Sugar Tetranychidae - genetics Tetranychidae - metabolism Tetranychus cinnabarinus UDP‐glycosyltransferases Uracil - analogs & derivatives Uridine Xenobiotics |
title | Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20UGT201D3%20associated%20with%20abamectin%20resistance%20in%20Tetranychus%20cinnabarinus%20(Boisduval)&rft.jtitle=Insect%20science&rft.au=Wang,%20Meng%E2%80%90Yao&rft.date=2020-04&rft.volume=27&rft.issue=2&rft.spage=276&rft.epage=291&rft.pages=276-291&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.12637&rft_dat=%3Cproquest_pubme%3E2092533796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338883241&rft_id=info:pmid/30136378&rfr_iscdi=true |