Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)

Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect science 2020-04, Vol.27 (2), p.276-291
Hauptverfasser: Wang, Meng‐Yao, Liu, Xin‐Yang, Shi, Li, Liu, Jia‐Lu, Shen, Guang‐Mao, Zhang, Ping, Lu, Wen‐Cai, He, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 276
container_title Insect science
container_volume 27
creator Wang, Meng‐Yao
Liu, Xin‐Yang
Shi, Li
Liu, Jia‐Lu
Shen, Guang‐Mao
Zhang, Ping
Lu, Wen‐Cai
He, Lin
description Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.
doi_str_mv 10.1111/1744-7917.12637
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2338883241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092533796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EoqV0zQ5FYlMWaf1KbG-QSqEPqYJFp2vrxnEYVxm72Emr-ffcYcqosMEL29f-7tGxDyHvGD1mOE6YkrJWhqljxluhXpD93clL3LeK16alZo-8KeWOUmG44a_JnqBMIK73yXg-RzeFFGGsAKd1CaVKQ3V7seCUfREVlJJcgMn31WOYlhV0sPLYEavskZ0gOl9htfBThrh2y7lULsSIXA4Ri6PPKZR-foDx41vyaoCx-MOn9YDcnn9dnF3W198vrs5Or2snW6Vq2WsmBuil6VqGTo0RstHAlJbcNdD6DoTovJDgQEnuO8e0oHIYqG6MYk4ckE9b3fu5W_ne-YjeRnufwwry2iYI9u-bGJb2R3qwSijDFUeBoyeBnH7Ovkx2FYrz4wjRp7lYTg1vBMItoh_-Qe_SnPEnkRJCay24ZEidbCmXUynZDzszjNpNknaTm93kZn8niR3vn79hx_-JDoFmCzyG0a__p2evvt1shX8BVIiouw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338883241</pqid></control><display><type>article</type><title>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Meng‐Yao ; Liu, Xin‐Yang ; Shi, Li ; Liu, Jia‐Lu ; Shen, Guang‐Mao ; Zhang, Ping ; Lu, Wen‐Cai ; He, Lin</creator><creatorcontrib>Wang, Meng‐Yao ; Liu, Xin‐Yang ; Shi, Li ; Liu, Jia‐Lu ; Shen, Guang‐Mao ; Zhang, Ping ; Lu, Wen‐Cai ; He, Lin</creatorcontrib><description>Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.</description><identifier>ISSN: 1672-9609</identifier><identifier>ISSN: 1744-7917</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.12637</identifier><identifier>PMID: 30136378</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Abamectin ; abamectin resistance ; Amino Acid Sequence ; Animals ; Biotransformation ; DNA microarrays ; E coli ; Enzymatic activity ; Enzyme activity ; Escherichia coli ; Female ; Functional analysis ; Gene silencing ; Glucuronosyltransferase - genetics ; Glucuronosyltransferase - metabolism ; Insecticide Resistance ; Insecticides ; Ivermectin - analogs &amp; derivatives ; Lipophilic ; Liquid chromatography ; Naphthol ; Original ; prokaryotic expression ; Proteins ; RNA Interference ; Sugar ; Tetranychidae - genetics ; Tetranychidae - metabolism ; Tetranychus cinnabarinus ; UDP‐glycosyltransferases ; Uracil - analogs &amp; derivatives ; Uridine ; Xenobiotics</subject><ispartof>Insect science, 2020-04, Vol.27 (2), p.276-291</ispartof><rights>2018 Institute of Zoology, Chinese Academy of Sciences</rights><rights>2018 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</citedby><cites>FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</cites><orcidid>0000-0002-5491-5375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1744-7917.12637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1744-7917.12637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30136378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meng‐Yao</creatorcontrib><creatorcontrib>Liu, Xin‐Yang</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Liu, Jia‐Lu</creatorcontrib><creatorcontrib>Shen, Guang‐Mao</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Lu, Wen‐Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><title>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</title><title>Insect science</title><addtitle>Insect Sci</addtitle><description>Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.</description><subject>Abamectin</subject><subject>abamectin resistance</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biotransformation</subject><subject>DNA microarrays</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Escherichia coli</subject><subject>Female</subject><subject>Functional analysis</subject><subject>Gene silencing</subject><subject>Glucuronosyltransferase - genetics</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Insecticide Resistance</subject><subject>Insecticides</subject><subject>Ivermectin - analogs &amp; derivatives</subject><subject>Lipophilic</subject><subject>Liquid chromatography</subject><subject>Naphthol</subject><subject>Original</subject><subject>prokaryotic expression</subject><subject>Proteins</subject><subject>RNA Interference</subject><subject>Sugar</subject><subject>Tetranychidae - genetics</subject><subject>Tetranychidae - metabolism</subject><subject>Tetranychus cinnabarinus</subject><subject>UDP‐glycosyltransferases</subject><subject>Uracil - analogs &amp; derivatives</subject><subject>Uridine</subject><subject>Xenobiotics</subject><issn>1672-9609</issn><issn>1744-7917</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EoqV0zQ5FYlMWaf1KbG-QSqEPqYJFp2vrxnEYVxm72Emr-ffcYcqosMEL29f-7tGxDyHvGD1mOE6YkrJWhqljxluhXpD93clL3LeK16alZo-8KeWOUmG44a_JnqBMIK73yXg-RzeFFGGsAKd1CaVKQ3V7seCUfREVlJJcgMn31WOYlhV0sPLYEavskZ0gOl9htfBThrh2y7lULsSIXA4Ri6PPKZR-foDx41vyaoCx-MOn9YDcnn9dnF3W198vrs5Or2snW6Vq2WsmBuil6VqGTo0RstHAlJbcNdD6DoTovJDgQEnuO8e0oHIYqG6MYk4ckE9b3fu5W_ne-YjeRnufwwry2iYI9u-bGJb2R3qwSijDFUeBoyeBnH7Ovkx2FYrz4wjRp7lYTg1vBMItoh_-Qe_SnPEnkRJCay24ZEidbCmXUynZDzszjNpNknaTm93kZn8niR3vn79hx_-JDoFmCzyG0a__p2evvt1shX8BVIiouw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Wang, Meng‐Yao</creator><creator>Liu, Xin‐Yang</creator><creator>Shi, Li</creator><creator>Liu, Jia‐Lu</creator><creator>Shen, Guang‐Mao</creator><creator>Zhang, Ping</creator><creator>Lu, Wen‐Cai</creator><creator>He, Lin</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5491-5375</orcidid></search><sort><creationdate>202004</creationdate><title>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</title><author>Wang, Meng‐Yao ; Liu, Xin‐Yang ; Shi, Li ; Liu, Jia‐Lu ; Shen, Guang‐Mao ; Zhang, Ping ; Lu, Wen‐Cai ; He, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4677-4d813fad49b61013993458a17842c5a6eba33be34aca742ebc18304ff085971c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abamectin</topic><topic>abamectin resistance</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biotransformation</topic><topic>DNA microarrays</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Escherichia coli</topic><topic>Female</topic><topic>Functional analysis</topic><topic>Gene silencing</topic><topic>Glucuronosyltransferase - genetics</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Insecticide Resistance</topic><topic>Insecticides</topic><topic>Ivermectin - analogs &amp; derivatives</topic><topic>Lipophilic</topic><topic>Liquid chromatography</topic><topic>Naphthol</topic><topic>Original</topic><topic>prokaryotic expression</topic><topic>Proteins</topic><topic>RNA Interference</topic><topic>Sugar</topic><topic>Tetranychidae - genetics</topic><topic>Tetranychidae - metabolism</topic><topic>Tetranychus cinnabarinus</topic><topic>UDP‐glycosyltransferases</topic><topic>Uracil - analogs &amp; derivatives</topic><topic>Uridine</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng‐Yao</creatorcontrib><creatorcontrib>Liu, Xin‐Yang</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Liu, Jia‐Lu</creatorcontrib><creatorcontrib>Shen, Guang‐Mao</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Lu, Wen‐Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng‐Yao</au><au>Liu, Xin‐Yang</au><au>Shi, Li</au><au>Liu, Jia‐Lu</au><au>Shen, Guang‐Mao</au><au>Zhang, Ping</au><au>Lu, Wen‐Cai</au><au>He, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)</atitle><jtitle>Insect science</jtitle><addtitle>Insect Sci</addtitle><date>2020-04</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><spage>276</spage><epage>291</epage><pages>276-291</pages><issn>1672-9609</issn><issn>1744-7917</issn><eissn>1744-7917</eissn><abstract>Uridine diphosphate (UDP)‐glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo‐ and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin‐resistant (AbR) strain was significantly higher (2.35‐fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5‐nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α‐naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High‐performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30136378</pmid><doi>10.1111/1744-7917.12637</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5491-5375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-9609
ispartof Insect science, 2020-04, Vol.27 (2), p.276-291
issn 1672-9609
1744-7917
1744-7917
language eng
recordid cdi_proquest_journals_2338883241
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Abamectin
abamectin resistance
Amino Acid Sequence
Animals
Biotransformation
DNA microarrays
E coli
Enzymatic activity
Enzyme activity
Escherichia coli
Female
Functional analysis
Gene silencing
Glucuronosyltransferase - genetics
Glucuronosyltransferase - metabolism
Insecticide Resistance
Insecticides
Ivermectin - analogs & derivatives
Lipophilic
Liquid chromatography
Naphthol
Original
prokaryotic expression
Proteins
RNA Interference
Sugar
Tetranychidae - genetics
Tetranychidae - metabolism
Tetranychus cinnabarinus
UDP‐glycosyltransferases
Uracil - analogs & derivatives
Uridine
Xenobiotics
title Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20UGT201D3%20associated%20with%20abamectin%20resistance%20in%20Tetranychus%20cinnabarinus%20(Boisduval)&rft.jtitle=Insect%20science&rft.au=Wang,%20Meng%E2%80%90Yao&rft.date=2020-04&rft.volume=27&rft.issue=2&rft.spage=276&rft.epage=291&rft.pages=276-291&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.12637&rft_dat=%3Cproquest_pubme%3E2092533796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338883241&rft_id=info:pmid/30136378&rfr_iscdi=true