Embedding domain knowledge for machine learning of complex material systems

Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS communications 2019-09, Vol.9 (3), p.806-820
Hauptverfasser: Childs, Christopher M., Washburn, Newell R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 3
container_start_page 806
container_title MRS communications
container_volume 9
creator Childs, Christopher M.
Washburn, Newell R.
description Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.
doi_str_mv 10.1557/mrc.2019.90
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338708156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2019_90</cupid><sourcerecordid>2338708156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCpbalS8QcKlT8zuZLKXUKhbc6DokM0mdOpnUZIr27U1p0Y2YzQ3cj3PhAHCJ0RRzLm59rKcEYTmV6ASMCOayKKtSnP78uTwHk5TWKD9eEiH4CDzNvbFN0_Yr2ASv2x6-9-Gzs83KQhci9Lp-a3sLO6tjv1fBwTr4TWe_8m6wsdUdTLs0WJ8uwJnTXbKT4xyD1_v5y-yhWD4vHmd3y6KmtBwK5ogwjFmmNUKECoMlsRUrmaGCaW7qRmBJiWuQw86QpqZO88qQEhOJXVZjcHXI3cTwsbVpUOuwjX0-qQillUAV5mVW1wdVx5BStE5tYut13CmM1L4wlQtT-8KURFnfHHTKql_Z-Jv5Ny-O4dqb2Oa2_vffVN17uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338708156</pqid></control><display><type>article</type><title>Embedding domain knowledge for machine learning of complex material systems</title><source>Cambridge Journals Online</source><source>SpringerLink (Online service)</source><creator>Childs, Christopher M. ; Washburn, Newell R.</creator><creatorcontrib>Childs, Christopher M. ; Washburn, Newell R.</creatorcontrib><description>Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2019.90</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algorithms ; Artificial Intelligence Prospective ; Artificial Intelligence Prospectives ; Big Data ; Biomaterials ; Characterization and Evaluation of Materials ; Datasets ; Design of experiments ; Domains ; Embedded systems ; Embedding ; Knowledge ; Machine learning ; Material properties ; Materials Engineering ; Materials Science ; Nanotechnology ; Polymer Sciences ; Statistical inference ; Variables</subject><ispartof>MRS communications, 2019-09, Vol.9 (3), p.806-820</ispartof><rights>Copyright © The Author(s) 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</citedby><cites>FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrc.2019.90$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2159685919000909/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Childs, Christopher M.</creatorcontrib><creatorcontrib>Washburn, Newell R.</creatorcontrib><title>Embedding domain knowledge for machine learning of complex material systems</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.</description><subject>Algorithms</subject><subject>Artificial Intelligence Prospective</subject><subject>Artificial Intelligence Prospectives</subject><subject>Big Data</subject><subject>Biomaterials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Datasets</subject><subject>Design of experiments</subject><subject>Domains</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Knowledge</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Polymer Sciences</subject><subject>Statistical inference</subject><subject>Variables</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90M1KAzEUBeAgCpbalS8QcKlT8zuZLKXUKhbc6DokM0mdOpnUZIr27U1p0Y2YzQ3cj3PhAHCJ0RRzLm59rKcEYTmV6ASMCOayKKtSnP78uTwHk5TWKD9eEiH4CDzNvbFN0_Yr2ASv2x6-9-Gzs83KQhci9Lp-a3sLO6tjv1fBwTr4TWe_8m6wsdUdTLs0WJ8uwJnTXbKT4xyD1_v5y-yhWD4vHmd3y6KmtBwK5ogwjFmmNUKECoMlsRUrmaGCaW7qRmBJiWuQw86QpqZO88qQEhOJXVZjcHXI3cTwsbVpUOuwjX0-qQillUAV5mVW1wdVx5BStE5tYut13CmM1L4wlQtT-8KURFnfHHTKql_Z-Jv5Ny-O4dqb2Oa2_vffVN17uw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Childs, Christopher M.</creator><creator>Washburn, Newell R.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190901</creationdate><title>Embedding domain knowledge for machine learning of complex material systems</title><author>Childs, Christopher M. ; Washburn, Newell R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence Prospective</topic><topic>Artificial Intelligence Prospectives</topic><topic>Big Data</topic><topic>Biomaterials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Datasets</topic><topic>Design of experiments</topic><topic>Domains</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Knowledge</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Polymer Sciences</topic><topic>Statistical inference</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childs, Christopher M.</creatorcontrib><creatorcontrib>Washburn, Newell R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childs, Christopher M.</au><au>Washburn, Newell R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding domain knowledge for machine learning of complex material systems</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>806</spage><epage>820</epage><pages>806-820</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2019.90</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2159-6859
ispartof MRS communications, 2019-09, Vol.9 (3), p.806-820
issn 2159-6859
2159-6867
language eng
recordid cdi_proquest_journals_2338708156
source Cambridge Journals Online; SpringerLink (Online service)
subjects Algorithms
Artificial Intelligence Prospective
Artificial Intelligence Prospectives
Big Data
Biomaterials
Characterization and Evaluation of Materials
Datasets
Design of experiments
Domains
Embedded systems
Embedding
Knowledge
Machine learning
Material properties
Materials Engineering
Materials Science
Nanotechnology
Polymer Sciences
Statistical inference
Variables
title Embedding domain knowledge for machine learning of complex material systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20domain%20knowledge%20for%20machine%20learning%20of%20complex%20material%20systems&rft.jtitle=MRS%20communications&rft.au=Childs,%20Christopher%20M.&rft.date=2019-09-01&rft.volume=9&rft.issue=3&rft.spage=806&rft.epage=820&rft.pages=806-820&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2019.90&rft_dat=%3Cproquest_cross%3E2338708156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338708156&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2019_90&rfr_iscdi=true