Embedding domain knowledge for machine learning of complex material systems
Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of...
Gespeichert in:
Veröffentlicht in: | MRS communications 2019-09, Vol.9 (3), p.806-820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 3 |
container_start_page | 806 |
container_title | MRS communications |
container_volume | 9 |
creator | Childs, Christopher M. Washburn, Newell R. |
description | Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied. |
doi_str_mv | 10.1557/mrc.2019.90 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338708156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2019_90</cupid><sourcerecordid>2338708156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCpbalS8QcKlT8zuZLKXUKhbc6DokM0mdOpnUZIr27U1p0Y2YzQ3cj3PhAHCJ0RRzLm59rKcEYTmV6ASMCOayKKtSnP78uTwHk5TWKD9eEiH4CDzNvbFN0_Yr2ASv2x6-9-Gzs83KQhci9Lp-a3sLO6tjv1fBwTr4TWe_8m6wsdUdTLs0WJ8uwJnTXbKT4xyD1_v5y-yhWD4vHmd3y6KmtBwK5ogwjFmmNUKECoMlsRUrmaGCaW7qRmBJiWuQw86QpqZO88qQEhOJXVZjcHXI3cTwsbVpUOuwjX0-qQillUAV5mVW1wdVx5BStE5tYut13CmM1L4wlQtT-8KURFnfHHTKql_Z-Jv5Ny-O4dqb2Oa2_vffVN17uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338708156</pqid></control><display><type>article</type><title>Embedding domain knowledge for machine learning of complex material systems</title><source>Cambridge Journals Online</source><source>SpringerLink (Online service)</source><creator>Childs, Christopher M. ; Washburn, Newell R.</creator><creatorcontrib>Childs, Christopher M. ; Washburn, Newell R.</creatorcontrib><description>Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2019.90</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algorithms ; Artificial Intelligence Prospective ; Artificial Intelligence Prospectives ; Big Data ; Biomaterials ; Characterization and Evaluation of Materials ; Datasets ; Design of experiments ; Domains ; Embedded systems ; Embedding ; Knowledge ; Machine learning ; Material properties ; Materials Engineering ; Materials Science ; Nanotechnology ; Polymer Sciences ; Statistical inference ; Variables</subject><ispartof>MRS communications, 2019-09, Vol.9 (3), p.806-820</ispartof><rights>Copyright © The Author(s) 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</citedby><cites>FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrc.2019.90$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2159685919000909/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Childs, Christopher M.</creatorcontrib><creatorcontrib>Washburn, Newell R.</creatorcontrib><title>Embedding domain knowledge for machine learning of complex material systems</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.</description><subject>Algorithms</subject><subject>Artificial Intelligence Prospective</subject><subject>Artificial Intelligence Prospectives</subject><subject>Big Data</subject><subject>Biomaterials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Datasets</subject><subject>Design of experiments</subject><subject>Domains</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Knowledge</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Polymer Sciences</subject><subject>Statistical inference</subject><subject>Variables</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90M1KAzEUBeAgCpbalS8QcKlT8zuZLKXUKhbc6DokM0mdOpnUZIr27U1p0Y2YzQ3cj3PhAHCJ0RRzLm59rKcEYTmV6ASMCOayKKtSnP78uTwHk5TWKD9eEiH4CDzNvbFN0_Yr2ASv2x6-9-Gzs83KQhci9Lp-a3sLO6tjv1fBwTr4TWe_8m6wsdUdTLs0WJ8uwJnTXbKT4xyD1_v5y-yhWD4vHmd3y6KmtBwK5ogwjFmmNUKECoMlsRUrmaGCaW7qRmBJiWuQw86QpqZO88qQEhOJXVZjcHXI3cTwsbVpUOuwjX0-qQillUAV5mVW1wdVx5BStE5tYut13CmM1L4wlQtT-8KURFnfHHTKql_Z-Jv5Ny-O4dqb2Oa2_vffVN17uw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Childs, Christopher M.</creator><creator>Washburn, Newell R.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190901</creationdate><title>Embedding domain knowledge for machine learning of complex material systems</title><author>Childs, Christopher M. ; Washburn, Newell R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4f27b44e4aa00237b192e8464b374a5bcd71932fd0f1fb2dc3fa58b261291f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence Prospective</topic><topic>Artificial Intelligence Prospectives</topic><topic>Big Data</topic><topic>Biomaterials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Datasets</topic><topic>Design of experiments</topic><topic>Domains</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Knowledge</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Polymer Sciences</topic><topic>Statistical inference</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childs, Christopher M.</creatorcontrib><creatorcontrib>Washburn, Newell R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childs, Christopher M.</au><au>Washburn, Newell R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding domain knowledge for machine learning of complex material systems</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>806</spage><epage>820</epage><pages>806-820</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>Machine learning (ML) has revolutionized disciplines within materials science that have been able to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for many important classes of materials the datasets remain small. However, a rapidly growing number of approaches to embedding domain knowledge of materials systems are reducing data requirements and allowing broader applications of ML. Furthermore, these hybrid approaches improve the interpretability of the predictions, allowing for greater physical insights into the factors that determine material properties. This review introduces a number of these strategies, providing examples of how they were implemented in ML algorithms and discussing the materials systems to which they were applied.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2019.90</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-6859 |
ispartof | MRS communications, 2019-09, Vol.9 (3), p.806-820 |
issn | 2159-6859 2159-6867 |
language | eng |
recordid | cdi_proquest_journals_2338708156 |
source | Cambridge Journals Online; SpringerLink (Online service) |
subjects | Algorithms Artificial Intelligence Prospective Artificial Intelligence Prospectives Big Data Biomaterials Characterization and Evaluation of Materials Datasets Design of experiments Domains Embedded systems Embedding Knowledge Machine learning Material properties Materials Engineering Materials Science Nanotechnology Polymer Sciences Statistical inference Variables |
title | Embedding domain knowledge for machine learning of complex material systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20domain%20knowledge%20for%20machine%20learning%20of%20complex%20material%20systems&rft.jtitle=MRS%20communications&rft.au=Childs,%20Christopher%20M.&rft.date=2019-09-01&rft.volume=9&rft.issue=3&rft.spage=806&rft.epage=820&rft.pages=806-820&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2019.90&rft_dat=%3Cproquest_cross%3E2338708156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338708156&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2019_90&rfr_iscdi=true |