Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode
Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2019-09, Vol.34 (18), p.3204-3211 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3211 |
---|---|
container_issue | 18 |
container_start_page | 3204 |
container_title | Journal of materials research |
container_volume | 34 |
creator | Deng, Xiaotao Li, Sirui Wang, Jiaqi Nan, Ding Dong, Junhui Liu, Jun |
description | Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs. |
doi_str_mv | 10.1557/jmr.2019.258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338554439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2019_258</cupid><sourcerecordid>2338554439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs3f8CCV7PN534cpfgFRS96Dskmu5vS3axJCq2_3pQWPImnGYZn3mEeAG4xyjHn5WI9-JwgXOeEV2dgRhBjkFNSnIMZqioGSY3ZJbgKYY0Q5qhkMyDfbPSuMyPUbjI6-7Zjs2ickpuYDXaXJm5ntUl94x1cjHJ0YeqNNyFrnc962_XQy2iyjY293Q7QujFTMkbj91mCtbkGF63cBHNzqnPw-fT4sXyBq_fn1-XDCja0rCOktNBtSQqtpClk-qKoG9aUdVPVJdMaK1pT3CBNFVVS8woThaVUjGppSq5bOgd3x9zJu6-tCVGs3daP6aQglFacM5Yi5uD-SKV3QvCmFZO3g_R7gZE4SBRJojhIFEliwuERDwkbO-N_Q__g81O8HJS3ujP_LPwAdISE1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338554439</pqid></control><display><type>article</type><title>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Deng, Xiaotao ; Li, Sirui ; Wang, Jiaqi ; Nan, Ding ; Dong, Junhui ; Liu, Jun</creator><creatorcontrib>Deng, Xiaotao ; Li, Sirui ; Wang, Jiaqi ; Nan, Ding ; Dong, Junhui ; Liu, Jun</creatorcontrib><description>Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2019.258</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Anodes ; Applied and Technical Physics ; Bicarbonates ; Biomaterials ; Carbon ; Current density ; Electric vehicles ; Electrochemical analysis ; Electrodes ; Energy ; Energy Conversion and Storage Materials ; Energy storage ; Graphite ; Inorganic Chemistry ; Lithium ; Lithium-ion batteries ; Materials Engineering ; Materials research ; Materials Science ; Metal oxides ; Morphology ; Nanospheres ; Nanotechnology ; Nitrogen ; Particle size ; Rechargeable batteries ; Scanning electron microscopy ; Spectrum analysis ; Zinc ; Zinc oxide</subject><ispartof>Journal of materials research, 2019-09, Vol.34 (18), p.3204-3211</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</citedby><cites>FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2019.258$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291419002589/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Deng, Xiaotao</creatorcontrib><creatorcontrib>Li, Sirui</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Nan, Ding</creatorcontrib><creatorcontrib>Dong, Junhui</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.</description><subject>Anodes</subject><subject>Applied and Technical Physics</subject><subject>Bicarbonates</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Current density</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy Conversion and Storage Materials</subject><subject>Energy storage</subject><subject>Graphite</subject><subject>Inorganic Chemistry</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanospheres</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Particle size</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><subject>Zinc oxide</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LAzEQhoMoWKs3f8CCV7PN534cpfgFRS96Dskmu5vS3axJCq2_3pQWPImnGYZn3mEeAG4xyjHn5WI9-JwgXOeEV2dgRhBjkFNSnIMZqioGSY3ZJbgKYY0Q5qhkMyDfbPSuMyPUbjI6-7Zjs2ickpuYDXaXJm5ntUl94x1cjHJ0YeqNNyFrnc962_XQy2iyjY293Q7QujFTMkbj91mCtbkGF63cBHNzqnPw-fT4sXyBq_fn1-XDCja0rCOktNBtSQqtpClk-qKoG9aUdVPVJdMaK1pT3CBNFVVS8woThaVUjGppSq5bOgd3x9zJu6-tCVGs3daP6aQglFacM5Yi5uD-SKV3QvCmFZO3g_R7gZE4SBRJojhIFEliwuERDwkbO-N_Q__g81O8HJS3ujP_LPwAdISE1w</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Deng, Xiaotao</creator><creator>Li, Sirui</creator><creator>Wang, Jiaqi</creator><creator>Nan, Ding</creator><creator>Dong, Junhui</creator><creator>Liu, Jun</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20190930</creationdate><title>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</title><author>Deng, Xiaotao ; Li, Sirui ; Wang, Jiaqi ; Nan, Ding ; Dong, Junhui ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Applied and Technical Physics</topic><topic>Bicarbonates</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Current density</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy Conversion and Storage Materials</topic><topic>Energy storage</topic><topic>Graphite</topic><topic>Inorganic Chemistry</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanospheres</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Particle size</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xiaotao</creatorcontrib><creatorcontrib>Li, Sirui</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Nan, Ding</creatorcontrib><creatorcontrib>Dong, Junhui</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xiaotao</au><au>Li, Sirui</au><au>Wang, Jiaqi</au><au>Nan, Ding</au><au>Dong, Junhui</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-09-30</date><risdate>2019</risdate><volume>34</volume><issue>18</issue><spage>3204</spage><epage>3211</epage><pages>3204-3211</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2019.258</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2019-09, Vol.34 (18), p.3204-3211 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2338554439 |
source | SpringerNature Journals; Cambridge University Press Journals Complete |
subjects | Anodes Applied and Technical Physics Bicarbonates Biomaterials Carbon Current density Electric vehicles Electrochemical analysis Electrodes Energy Energy Conversion and Storage Materials Energy storage Graphite Inorganic Chemistry Lithium Lithium-ion batteries Materials Engineering Materials research Materials Science Metal oxides Morphology Nanospheres Nanotechnology Nitrogen Particle size Rechargeable batteries Scanning electron microscopy Spectrum analysis Zinc Zinc oxide |
title | Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped%20zinc/cobalt%20mixed%20oxide%20micro-/nanospheres%20for%20high-rate%20lithium-ion%20battery%20anode&rft.jtitle=Journal%20of%20materials%20research&rft.au=Deng,%20Xiaotao&rft.date=2019-09-30&rft.volume=34&rft.issue=18&rft.spage=3204&rft.epage=3211&rft.pages=3204-3211&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2019.258&rft_dat=%3Cproquest_cross%3E2338554439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338554439&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2019_258&rfr_iscdi=true |