Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode

Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2019-09, Vol.34 (18), p.3204-3211
Hauptverfasser: Deng, Xiaotao, Li, Sirui, Wang, Jiaqi, Nan, Ding, Dong, Junhui, Liu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3211
container_issue 18
container_start_page 3204
container_title Journal of materials research
container_volume 34
creator Deng, Xiaotao
Li, Sirui
Wang, Jiaqi
Nan, Ding
Dong, Junhui
Liu, Jun
description Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.
doi_str_mv 10.1557/jmr.2019.258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338554439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2019_258</cupid><sourcerecordid>2338554439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs3f8CCV7PN534cpfgFRS96Dskmu5vS3axJCq2_3pQWPImnGYZn3mEeAG4xyjHn5WI9-JwgXOeEV2dgRhBjkFNSnIMZqioGSY3ZJbgKYY0Q5qhkMyDfbPSuMyPUbjI6-7Zjs2ickpuYDXaXJm5ntUl94x1cjHJ0YeqNNyFrnc962_XQy2iyjY293Q7QujFTMkbj91mCtbkGF63cBHNzqnPw-fT4sXyBq_fn1-XDCja0rCOktNBtSQqtpClk-qKoG9aUdVPVJdMaK1pT3CBNFVVS8woThaVUjGppSq5bOgd3x9zJu6-tCVGs3daP6aQglFacM5Yi5uD-SKV3QvCmFZO3g_R7gZE4SBRJojhIFEliwuERDwkbO-N_Q__g81O8HJS3ujP_LPwAdISE1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338554439</pqid></control><display><type>article</type><title>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Deng, Xiaotao ; Li, Sirui ; Wang, Jiaqi ; Nan, Ding ; Dong, Junhui ; Liu, Jun</creator><creatorcontrib>Deng, Xiaotao ; Li, Sirui ; Wang, Jiaqi ; Nan, Ding ; Dong, Junhui ; Liu, Jun</creatorcontrib><description>Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2019.258</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Anodes ; Applied and Technical Physics ; Bicarbonates ; Biomaterials ; Carbon ; Current density ; Electric vehicles ; Electrochemical analysis ; Electrodes ; Energy ; Energy Conversion and Storage Materials ; Energy storage ; Graphite ; Inorganic Chemistry ; Lithium ; Lithium-ion batteries ; Materials Engineering ; Materials research ; Materials Science ; Metal oxides ; Morphology ; Nanospheres ; Nanotechnology ; Nitrogen ; Particle size ; Rechargeable batteries ; Scanning electron microscopy ; Spectrum analysis ; Zinc ; Zinc oxide</subject><ispartof>Journal of materials research, 2019-09, Vol.34 (18), p.3204-3211</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</citedby><cites>FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2019.258$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291419002589/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Deng, Xiaotao</creatorcontrib><creatorcontrib>Li, Sirui</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Nan, Ding</creatorcontrib><creatorcontrib>Dong, Junhui</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.</description><subject>Anodes</subject><subject>Applied and Technical Physics</subject><subject>Bicarbonates</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Current density</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy Conversion and Storage Materials</subject><subject>Energy storage</subject><subject>Graphite</subject><subject>Inorganic Chemistry</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanospheres</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Particle size</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><subject>Zinc oxide</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LAzEQhoMoWKs3f8CCV7PN534cpfgFRS96Dskmu5vS3axJCq2_3pQWPImnGYZn3mEeAG4xyjHn5WI9-JwgXOeEV2dgRhBjkFNSnIMZqioGSY3ZJbgKYY0Q5qhkMyDfbPSuMyPUbjI6-7Zjs2ickpuYDXaXJm5ntUl94x1cjHJ0YeqNNyFrnc962_XQy2iyjY293Q7QujFTMkbj91mCtbkGF63cBHNzqnPw-fT4sXyBq_fn1-XDCja0rCOktNBtSQqtpClk-qKoG9aUdVPVJdMaK1pT3CBNFVVS8woThaVUjGppSq5bOgd3x9zJu6-tCVGs3daP6aQglFacM5Yi5uD-SKV3QvCmFZO3g_R7gZE4SBRJojhIFEliwuERDwkbO-N_Q__g81O8HJS3ujP_LPwAdISE1w</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Deng, Xiaotao</creator><creator>Li, Sirui</creator><creator>Wang, Jiaqi</creator><creator>Nan, Ding</creator><creator>Dong, Junhui</creator><creator>Liu, Jun</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20190930</creationdate><title>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</title><author>Deng, Xiaotao ; Li, Sirui ; Wang, Jiaqi ; Nan, Ding ; Dong, Junhui ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-336df726dbae6a20169c4c79c8974dd1b3931c0d3b3bad5812b1aab43dae75df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Applied and Technical Physics</topic><topic>Bicarbonates</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Current density</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy Conversion and Storage Materials</topic><topic>Energy storage</topic><topic>Graphite</topic><topic>Inorganic Chemistry</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanospheres</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Particle size</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xiaotao</creatorcontrib><creatorcontrib>Li, Sirui</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Nan, Ding</creatorcontrib><creatorcontrib>Dong, Junhui</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xiaotao</au><au>Li, Sirui</au><au>Wang, Jiaqi</au><au>Nan, Ding</au><au>Dong, Junhui</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-09-30</date><risdate>2019</risdate><volume>34</volume><issue>18</issue><spage>3204</spage><epage>3211</epage><pages>3204-3211</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2019.258</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2019-09, Vol.34 (18), p.3204-3211
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2338554439
source SpringerNature Journals; Cambridge University Press Journals Complete
subjects Anodes
Applied and Technical Physics
Bicarbonates
Biomaterials
Carbon
Current density
Electric vehicles
Electrochemical analysis
Electrodes
Energy
Energy Conversion and Storage Materials
Energy storage
Graphite
Inorganic Chemistry
Lithium
Lithium-ion batteries
Materials Engineering
Materials research
Materials Science
Metal oxides
Morphology
Nanospheres
Nanotechnology
Nitrogen
Particle size
Rechargeable batteries
Scanning electron microscopy
Spectrum analysis
Zinc
Zinc oxide
title Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped%20zinc/cobalt%20mixed%20oxide%20micro-/nanospheres%20for%20high-rate%20lithium-ion%20battery%20anode&rft.jtitle=Journal%20of%20materials%20research&rft.au=Deng,%20Xiaotao&rft.date=2019-09-30&rft.volume=34&rft.issue=18&rft.spage=3204&rft.epage=3211&rft.pages=3204-3211&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2019.258&rft_dat=%3Cproquest_cross%3E2338554439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338554439&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2019_258&rfr_iscdi=true