Elevated-temperature creep of high-entropy alloys via nanoindentation
High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched t...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2019-11, Vol.44 (11), p.860-866 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 11 |
container_start_page | 860 |
container_title | MRS bulletin |
container_volume | 44 |
creator | Lin, P.H. Chou, H.S. Huang, J.C. Chuang, W.S. Jang, J.S.C. Nieh, T.G. |
description | High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched tests, elevated-temperature nanoindentation is a relatively new testing method for HEAs. With the high accuracy of depth-sensing technology and a stable temperature-controlling stage, elevated-temperature time-dependent mechanical behavior of HEAs can be investigated, especially at localized regions without the limitations of the standard specimen size used for traditional creep testing. Also, the creep response from each grain in polycrystalline samples with various crystalline orientations can be explored in detail. This article overviews current progress in studying creep behavior in HEAs via nanoindentation technology. |
doi_str_mv | 10.1557/mrs.2019.258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338552738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2019_258</cupid><sourcerecordid>2338552738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-89b39c79cf8bbae56b7174c91485dd4ab62e0494e262d2955db0d2bc366942503</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWw4wMiscXBjzi2l6gqD6kSG1hbdjxpUyVxsNNK_XtStRIrxGoWc-6d0UHonpKcCiGfuphyRqjOmVAXaEY1V5gWTFyiGVGKY1nq4hrdpLQlhAoixQwtly3s7Qgej9ANEO24i5BVEWDIQp1tmvUGQz_GMBwy27bhkLJ9Y7Pe9qHp_bSxYxP6W3RV2zbB3XnO0dfL8nPxhlcfr--L5xWumCQjVtpxXUld1co5C6J0ksqi0rRQwvvCupIBKXQBrGSeaSG8I565ipfT40wQPkcPp94hhu8dpNFswy7200nDOFdCMMnVRD2eqCqGlCLUZohNZ-PBUGKOoswkyhxFmUnUhOMTniasX0P8Lf2Dz8_1tnOx8Wv4J_ADI3N6GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338552738</pqid></control><display><type>article</type><title>Elevated-temperature creep of high-entropy alloys via nanoindentation</title><source>SpringerLink Journals</source><source>Cambridge Journals</source><creator>Lin, P.H. ; Chou, H.S. ; Huang, J.C. ; Chuang, W.S. ; Jang, J.S.C. ; Nieh, T.G.</creator><creatorcontrib>Lin, P.H. ; Chou, H.S. ; Huang, J.C. ; Chuang, W.S. ; Jang, J.S.C. ; Nieh, T.G.</creatorcontrib><description>High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched tests, elevated-temperature nanoindentation is a relatively new testing method for HEAs. With the high accuracy of depth-sensing technology and a stable temperature-controlling stage, elevated-temperature time-dependent mechanical behavior of HEAs can be investigated, especially at localized regions without the limitations of the standard specimen size used for traditional creep testing. Also, the creep response from each grain in polycrystalline samples with various crystalline orientations can be explored in detail. This article overviews current progress in studying creep behavior in HEAs via nanoindentation technology.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2019.258</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Creep tests ; Energy Materials ; Entropy ; High entropy alloys ; High temperature ; High-Temperature Materials for Structural Applications ; Industrial applications ; Materials Engineering ; Materials Science ; Mechanical properties ; Metals ; Microelectromechanical systems ; Nanoindentation ; Nanotechnology ; Residual stress ; Temperature ; Temperature dependence ; Thin films ; Time dependence</subject><ispartof>MRS bulletin, 2019-11, Vol.44 (11), p.860-866</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-89b39c79cf8bbae56b7174c91485dd4ab62e0494e262d2955db0d2bc366942503</citedby><cites>FETCH-LOGICAL-c270t-89b39c79cf8bbae56b7174c91485dd4ab62e0494e262d2955db0d2bc366942503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2019.258$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769419002586/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,41469,42538,51300,55609</link.rule.ids></links><search><creatorcontrib>Lin, P.H.</creatorcontrib><creatorcontrib>Chou, H.S.</creatorcontrib><creatorcontrib>Huang, J.C.</creatorcontrib><creatorcontrib>Chuang, W.S.</creatorcontrib><creatorcontrib>Jang, J.S.C.</creatorcontrib><creatorcontrib>Nieh, T.G.</creatorcontrib><title>Elevated-temperature creep of high-entropy alloys via nanoindentation</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched tests, elevated-temperature nanoindentation is a relatively new testing method for HEAs. With the high accuracy of depth-sensing technology and a stable temperature-controlling stage, elevated-temperature time-dependent mechanical behavior of HEAs can be investigated, especially at localized regions without the limitations of the standard specimen size used for traditional creep testing. Also, the creep response from each grain in polycrystalline samples with various crystalline orientations can be explored in detail. This article overviews current progress in studying creep behavior in HEAs via nanoindentation technology.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Creep tests</subject><subject>Energy Materials</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>High-Temperature Materials for Structural Applications</subject><subject>Industrial applications</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Microelectromechanical systems</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Residual stress</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thin films</subject><subject>Time dependence</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtOwzAQRS0EEqWw4wMiscXBjzi2l6gqD6kSG1hbdjxpUyVxsNNK_XtStRIrxGoWc-6d0UHonpKcCiGfuphyRqjOmVAXaEY1V5gWTFyiGVGKY1nq4hrdpLQlhAoixQwtly3s7Qgej9ANEO24i5BVEWDIQp1tmvUGQz_GMBwy27bhkLJ9Y7Pe9qHp_bSxYxP6W3RV2zbB3XnO0dfL8nPxhlcfr--L5xWumCQjVtpxXUld1co5C6J0ksqi0rRQwvvCupIBKXQBrGSeaSG8I565ipfT40wQPkcPp94hhu8dpNFswy7200nDOFdCMMnVRD2eqCqGlCLUZohNZ-PBUGKOoswkyhxFmUnUhOMTniasX0P8Lf2Dz8_1tnOx8Wv4J_ADI3N6GA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lin, P.H.</creator><creator>Chou, H.S.</creator><creator>Huang, J.C.</creator><creator>Chuang, W.S.</creator><creator>Jang, J.S.C.</creator><creator>Nieh, T.G.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope></search><sort><creationdate>20191101</creationdate><title>Elevated-temperature creep of high-entropy alloys via nanoindentation</title><author>Lin, P.H. ; Chou, H.S. ; Huang, J.C. ; Chuang, W.S. ; Jang, J.S.C. ; Nieh, T.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-89b39c79cf8bbae56b7174c91485dd4ab62e0494e262d2955db0d2bc366942503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Creep tests</topic><topic>Energy Materials</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>High-Temperature Materials for Structural Applications</topic><topic>Industrial applications</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Microelectromechanical systems</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Residual stress</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thin films</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, P.H.</creatorcontrib><creatorcontrib>Chou, H.S.</creatorcontrib><creatorcontrib>Huang, J.C.</creatorcontrib><creatorcontrib>Chuang, W.S.</creatorcontrib><creatorcontrib>Jang, J.S.C.</creatorcontrib><creatorcontrib>Nieh, T.G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, P.H.</au><au>Chou, H.S.</au><au>Huang, J.C.</au><au>Chuang, W.S.</au><au>Jang, J.S.C.</au><au>Nieh, T.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevated-temperature creep of high-entropy alloys via nanoindentation</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>44</volume><issue>11</issue><spage>860</spage><epage>866</epage><pages>860-866</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched tests, elevated-temperature nanoindentation is a relatively new testing method for HEAs. With the high accuracy of depth-sensing technology and a stable temperature-controlling stage, elevated-temperature time-dependent mechanical behavior of HEAs can be investigated, especially at localized regions without the limitations of the standard specimen size used for traditional creep testing. Also, the creep response from each grain in polycrystalline samples with various crystalline orientations can be explored in detail. This article overviews current progress in studying creep behavior in HEAs via nanoindentation technology.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2019.258</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2019-11, Vol.44 (11), p.860-866 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_journals_2338552738 |
source | SpringerLink Journals; Cambridge Journals |
subjects | Alloys Applied and Technical Physics Characterization and Evaluation of Materials Creep tests Energy Materials Entropy High entropy alloys High temperature High-Temperature Materials for Structural Applications Industrial applications Materials Engineering Materials Science Mechanical properties Metals Microelectromechanical systems Nanoindentation Nanotechnology Residual stress Temperature Temperature dependence Thin films Time dependence |
title | Elevated-temperature creep of high-entropy alloys via nanoindentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevated-temperature%20creep%20of%20high-entropy%20alloys%20via%20nanoindentation&rft.jtitle=MRS%20bulletin&rft.au=Lin,%20P.H.&rft.date=2019-11-01&rft.volume=44&rft.issue=11&rft.spage=860&rft.epage=866&rft.pages=860-866&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2019.258&rft_dat=%3Cproquest_cross%3E2338552738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338552738&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2019_258&rfr_iscdi=true |