Singular value automata and approximate minimization

The present paper uses spectral theory of linear operators to construct approximatelyminimal realizations of weighted languages. Our new contributions are: (i) a new algorithm for the singular value decomposition (SVD) decomposition of finite-rank infinite Hankel matrices based on their representati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2019-10, Vol.29 (9), p.1444-1478
Hauptverfasser: Balle, Borja, Panangaden, Prakash, Precup, Doina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1478
container_issue 9
container_start_page 1444
container_title Mathematical structures in computer science
container_volume 29
creator Balle, Borja
Panangaden, Prakash
Precup, Doina
description The present paper uses spectral theory of linear operators to construct approximatelyminimal realizations of weighted languages. Our new contributions are: (i) a new algorithm for the singular value decomposition (SVD) decomposition of finite-rank infinite Hankel matrices based on their representation in terms of weighted automata, (ii) a new canonical form for weighted automata arising from the SVD of its corresponding Hankelmatrix, and (iii) an algorithmto construct approximateminimizations of given weighted automata by truncating the canonical form.We give bounds on the quality of our approximation.
doi_str_mv 10.1017/S0960129519000094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338543665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338543665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-38274c7c0ab79a8b84d9e73eb648bfcc8e11053d91f680e83c1c9cb2bdc43fec3</originalsourceid><addsrcrecordid>eNplUMtKxEAQHETBdfUDvAU8R7vTk3kcZVFXWPCweg6TyURmyctJIurXO2G92ZeiqaKqKMauEW4RUN7tQQvATOeoIZ7mJ2yFXOhUgcxO2Wqh04U_ZxfjeABAQtArxve-e58bE5JP08wuMfPUt2YyiemqxAxD6L98_F3S-s63_sdMvu8u2VltmtFd_eGavT0-vG626e7l6Xlzv0ttJmlKSWWSW2nBlFIbVSpeaSfJlYKrsrZWOUTIqdJYCwVOkUWrbZmVleVUO0trdnP0jTU-ZjdOxaGfQxcji4xI5ZyEyKMKjyob-nEMri6GEDuH7wKhWMYp_o1Dv_yHVwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338543665</pqid></control><display><type>article</type><title>Singular value automata and approximate minimization</title><source>Cambridge University Press Journals Complete</source><creator>Balle, Borja ; Panangaden, Prakash ; Precup, Doina</creator><creatorcontrib>Balle, Borja ; Panangaden, Prakash ; Precup, Doina</creatorcontrib><description>The present paper uses spectral theory of linear operators to construct approximatelyminimal realizations of weighted languages. Our new contributions are: (i) a new algorithm for the singular value decomposition (SVD) decomposition of finite-rank infinite Hankel matrices based on their representation in terms of weighted automata, (ii) a new canonical form for weighted automata arising from the SVD of its corresponding Hankelmatrix, and (iii) an algorithmto construct approximateminimizations of given weighted automata by truncating the canonical form.We give bounds on the quality of our approximation.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S0960129519000094</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algorithms ; Canonical forms ; Hankel matrices ; Linear operators ; Singular value decomposition ; Spectral theory</subject><ispartof>Mathematical structures in computer science, 2019-10, Vol.29 (9), p.1444-1478</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-38274c7c0ab79a8b84d9e73eb648bfcc8e11053d91f680e83c1c9cb2bdc43fec3</citedby><cites>FETCH-LOGICAL-c273t-38274c7c0ab79a8b84d9e73eb648bfcc8e11053d91f680e83c1c9cb2bdc43fec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balle, Borja</creatorcontrib><creatorcontrib>Panangaden, Prakash</creatorcontrib><creatorcontrib>Precup, Doina</creatorcontrib><title>Singular value automata and approximate minimization</title><title>Mathematical structures in computer science</title><description>The present paper uses spectral theory of linear operators to construct approximatelyminimal realizations of weighted languages. Our new contributions are: (i) a new algorithm for the singular value decomposition (SVD) decomposition of finite-rank infinite Hankel matrices based on their representation in terms of weighted automata, (ii) a new canonical form for weighted automata arising from the SVD of its corresponding Hankelmatrix, and (iii) an algorithmto construct approximateminimizations of given weighted automata by truncating the canonical form.We give bounds on the quality of our approximation.</description><subject>Algorithms</subject><subject>Canonical forms</subject><subject>Hankel matrices</subject><subject>Linear operators</subject><subject>Singular value decomposition</subject><subject>Spectral theory</subject><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplUMtKxEAQHETBdfUDvAU8R7vTk3kcZVFXWPCweg6TyURmyctJIurXO2G92ZeiqaKqKMauEW4RUN7tQQvATOeoIZ7mJ2yFXOhUgcxO2Wqh04U_ZxfjeABAQtArxve-e58bE5JP08wuMfPUt2YyiemqxAxD6L98_F3S-s63_sdMvu8u2VltmtFd_eGavT0-vG626e7l6Xlzv0ttJmlKSWWSW2nBlFIbVSpeaSfJlYKrsrZWOUTIqdJYCwVOkUWrbZmVleVUO0trdnP0jTU-ZjdOxaGfQxcji4xI5ZyEyKMKjyob-nEMri6GEDuH7wKhWMYp_o1Dv_yHVwI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Balle, Borja</creator><creator>Panangaden, Prakash</creator><creator>Precup, Doina</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191001</creationdate><title>Singular value automata and approximate minimization</title><author>Balle, Borja ; Panangaden, Prakash ; Precup, Doina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-38274c7c0ab79a8b84d9e73eb648bfcc8e11053d91f680e83c1c9cb2bdc43fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Canonical forms</topic><topic>Hankel matrices</topic><topic>Linear operators</topic><topic>Singular value decomposition</topic><topic>Spectral theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balle, Borja</creatorcontrib><creatorcontrib>Panangaden, Prakash</creatorcontrib><creatorcontrib>Precup, Doina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balle, Borja</au><au>Panangaden, Prakash</au><au>Precup, Doina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular value automata and approximate minimization</atitle><jtitle>Mathematical structures in computer science</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>29</volume><issue>9</issue><spage>1444</spage><epage>1478</epage><pages>1444-1478</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>The present paper uses spectral theory of linear operators to construct approximatelyminimal realizations of weighted languages. Our new contributions are: (i) a new algorithm for the singular value decomposition (SVD) decomposition of finite-rank infinite Hankel matrices based on their representation in terms of weighted automata, (ii) a new canonical form for weighted automata arising from the SVD of its corresponding Hankelmatrix, and (iii) an algorithmto construct approximateminimizations of given weighted automata by truncating the canonical form.We give bounds on the quality of our approximation.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0960129519000094</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1295
ispartof Mathematical structures in computer science, 2019-10, Vol.29 (9), p.1444-1478
issn 0960-1295
1469-8072
language eng
recordid cdi_proquest_journals_2338543665
source Cambridge University Press Journals Complete
subjects Algorithms
Canonical forms
Hankel matrices
Linear operators
Singular value decomposition
Spectral theory
title Singular value automata and approximate minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20value%20automata%20and%20approximate%20minimization&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=Balle,%20Borja&rft.date=2019-10-01&rft.volume=29&rft.issue=9&rft.spage=1444&rft.epage=1478&rft.pages=1444-1478&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S0960129519000094&rft_dat=%3Cproquest_cross%3E2338543665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338543665&rft_id=info:pmid/&rfr_iscdi=true