Ripple mediated surface enhanced Raman spectroscopy on graphene
Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applicat...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2020-02, Vol.157, p.525-536 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | |
container_start_page | 525 |
container_title | Carbon (New York) |
container_volume | 157 |
creator | Prasad, Alisha Chaichi, Ardalan Mahigir, Amirreza Sahu, Sushant P. Ganta, Deepak Veronis, Georgios Gartia, Manas Ranjan |
description | Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2019.09.078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338194877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319309923</els_id><sourcerecordid>2338194877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</originalsourceid><addsrcrecordid>eNp9UNtKxDAQDaLgevkDHwo-tyZN2iQviizeYEFY9DlM06mbstvUpCvs35ulPgsHhrmcmTmHkBtGC0ZZfdcXFkLjh6KkTBc0QaoTsmBK8pwrzU7JglKq8ros-Tm5iLFPqVBMLMjD2o3jFrMdtg4mbLO4Dx1YzHDYwGBTYQ07GLI4op2Cj9aPh8wP2VeAcYMDXpGzDrYRr__iJfl8fvpYvuar95e35eMqt1zRKbeV1tCKBhqNZUUVWF51LQdQtWZadpLTqsOqbQXjtOZSQ9dwxeumEaldMX5Jbue9Y_Dfe4yT6f0-DOmkKTlXTAslZZoS85RNr8aAnRmD20E4GEbN0SrTm9kqc7TK0ASpEu1-pmFS8OMwmGgdHtW7kGSb1rv_F_wCH99zeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338194877</pqid></control><display><type>article</type><title>Ripple mediated surface enhanced Raman spectroscopy on graphene</title><source>Access via ScienceDirect (Elsevier)</source><creator>Prasad, Alisha ; Chaichi, Ardalan ; Mahigir, Amirreza ; Sahu, Sushant P. ; Ganta, Deepak ; Veronis, Georgios ; Gartia, Manas Ranjan</creator><creatorcontrib>Prasad, Alisha ; Chaichi, Ardalan ; Mahigir, Amirreza ; Sahu, Sushant P. ; Ganta, Deepak ; Veronis, Georgios ; Gartia, Manas Ranjan</creatorcontrib><description>Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.09.078</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Carbon ; Charge transfer ; Core-shell structure ; Density functional theory ; Electromagnetic absorption ; Electromagnetic fields ; Excitation ; Finite difference method ; Finite-difference time-domain ; Gold ; Graphene ; Infrared radiation ; Optoelectronics ; Organic chemistry ; Quantum mechanics ; Raman spectra ; Raman spectroscopy ; Rhodamine 6G ; Scattering ; Scattering cross sections ; Silver ; Single layer graphene ; Spectrum analysis ; Substrates ; Surface-enhanced Raman spectroscopy</subject><ispartof>Carbon (New York), 2020-02, Vol.157, p.525-536</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</citedby><cites>FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</cites><orcidid>0000-0002-2583-7427 ; 0000-0002-0000-3637 ; 0000-0001-6243-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.09.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Prasad, Alisha</creatorcontrib><creatorcontrib>Chaichi, Ardalan</creatorcontrib><creatorcontrib>Mahigir, Amirreza</creatorcontrib><creatorcontrib>Sahu, Sushant P.</creatorcontrib><creatorcontrib>Ganta, Deepak</creatorcontrib><creatorcontrib>Veronis, Georgios</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><title>Ripple mediated surface enhanced Raman spectroscopy on graphene</title><title>Carbon (New York)</title><description>Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering.
[Display omitted]</description><subject>Anisotropy</subject><subject>Carbon</subject><subject>Charge transfer</subject><subject>Core-shell structure</subject><subject>Density functional theory</subject><subject>Electromagnetic absorption</subject><subject>Electromagnetic fields</subject><subject>Excitation</subject><subject>Finite difference method</subject><subject>Finite-difference time-domain</subject><subject>Gold</subject><subject>Graphene</subject><subject>Infrared radiation</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Quantum mechanics</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Rhodamine 6G</subject><subject>Scattering</subject><subject>Scattering cross sections</subject><subject>Silver</subject><subject>Single layer graphene</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface-enhanced Raman spectroscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAQDaLgevkDHwo-tyZN2iQviizeYEFY9DlM06mbstvUpCvs35ulPgsHhrmcmTmHkBtGC0ZZfdcXFkLjh6KkTBc0QaoTsmBK8pwrzU7JglKq8ros-Tm5iLFPqVBMLMjD2o3jFrMdtg4mbLO4Dx1YzHDYwGBTYQ07GLI4op2Cj9aPh8wP2VeAcYMDXpGzDrYRr__iJfl8fvpYvuar95e35eMqt1zRKbeV1tCKBhqNZUUVWF51LQdQtWZadpLTqsOqbQXjtOZSQ9dwxeumEaldMX5Jbue9Y_Dfe4yT6f0-DOmkKTlXTAslZZoS85RNr8aAnRmD20E4GEbN0SrTm9kqc7TK0ASpEu1-pmFS8OMwmGgdHtW7kGSb1rv_F_wCH99zeQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Prasad, Alisha</creator><creator>Chaichi, Ardalan</creator><creator>Mahigir, Amirreza</creator><creator>Sahu, Sushant P.</creator><creator>Ganta, Deepak</creator><creator>Veronis, Georgios</creator><creator>Gartia, Manas Ranjan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2583-7427</orcidid><orcidid>https://orcid.org/0000-0002-0000-3637</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid></search><sort><creationdate>202002</creationdate><title>Ripple mediated surface enhanced Raman spectroscopy on graphene</title><author>Prasad, Alisha ; Chaichi, Ardalan ; Mahigir, Amirreza ; Sahu, Sushant P. ; Ganta, Deepak ; Veronis, Georgios ; Gartia, Manas Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Carbon</topic><topic>Charge transfer</topic><topic>Core-shell structure</topic><topic>Density functional theory</topic><topic>Electromagnetic absorption</topic><topic>Electromagnetic fields</topic><topic>Excitation</topic><topic>Finite difference method</topic><topic>Finite-difference time-domain</topic><topic>Gold</topic><topic>Graphene</topic><topic>Infrared radiation</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Quantum mechanics</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Rhodamine 6G</topic><topic>Scattering</topic><topic>Scattering cross sections</topic><topic>Silver</topic><topic>Single layer graphene</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface-enhanced Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Alisha</creatorcontrib><creatorcontrib>Chaichi, Ardalan</creatorcontrib><creatorcontrib>Mahigir, Amirreza</creatorcontrib><creatorcontrib>Sahu, Sushant P.</creatorcontrib><creatorcontrib>Ganta, Deepak</creatorcontrib><creatorcontrib>Veronis, Georgios</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Alisha</au><au>Chaichi, Ardalan</au><au>Mahigir, Amirreza</au><au>Sahu, Sushant P.</au><au>Ganta, Deepak</au><au>Veronis, Georgios</au><au>Gartia, Manas Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ripple mediated surface enhanced Raman spectroscopy on graphene</atitle><jtitle>Carbon (New York)</jtitle><date>2020-02</date><risdate>2020</risdate><volume>157</volume><spage>525</spage><epage>536</epage><pages>525-536</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.09.078</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2583-7427</orcidid><orcidid>https://orcid.org/0000-0002-0000-3637</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2020-02, Vol.157, p.525-536 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2338194877 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anisotropy Carbon Charge transfer Core-shell structure Density functional theory Electromagnetic absorption Electromagnetic fields Excitation Finite difference method Finite-difference time-domain Gold Graphene Infrared radiation Optoelectronics Organic chemistry Quantum mechanics Raman spectra Raman spectroscopy Rhodamine 6G Scattering Scattering cross sections Silver Single layer graphene Spectrum analysis Substrates Surface-enhanced Raman spectroscopy |
title | Ripple mediated surface enhanced Raman spectroscopy on graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ripple%20mediated%20surface%20enhanced%20Raman%20spectroscopy%20on%20graphene&rft.jtitle=Carbon%20(New%20York)&rft.au=Prasad,%20Alisha&rft.date=2020-02&rft.volume=157&rft.spage=525&rft.epage=536&rft.pages=525-536&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.09.078&rft_dat=%3Cproquest_cross%3E2338194877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338194877&rft_id=info:pmid/&rft_els_id=S0008622319309923&rfr_iscdi=true |