Ripple mediated surface enhanced Raman spectroscopy on graphene

Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-02, Vol.157, p.525-536
Hauptverfasser: Prasad, Alisha, Chaichi, Ardalan, Mahigir, Amirreza, Sahu, Sushant P., Ganta, Deepak, Veronis, Georgios, Gartia, Manas Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue
container_start_page 525
container_title Carbon (New York)
container_volume 157
creator Prasad, Alisha
Chaichi, Ardalan
Mahigir, Amirreza
Sahu, Sushant P.
Ganta, Deepak
Veronis, Georgios
Gartia, Manas Ranjan
description Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.09.078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338194877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319309923</els_id><sourcerecordid>2338194877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</originalsourceid><addsrcrecordid>eNp9UNtKxDAQDaLgevkDHwo-tyZN2iQviizeYEFY9DlM06mbstvUpCvs35ulPgsHhrmcmTmHkBtGC0ZZfdcXFkLjh6KkTBc0QaoTsmBK8pwrzU7JglKq8ros-Tm5iLFPqVBMLMjD2o3jFrMdtg4mbLO4Dx1YzHDYwGBTYQ07GLI4op2Cj9aPh8wP2VeAcYMDXpGzDrYRr__iJfl8fvpYvuar95e35eMqt1zRKbeV1tCKBhqNZUUVWF51LQdQtWZadpLTqsOqbQXjtOZSQ9dwxeumEaldMX5Jbue9Y_Dfe4yT6f0-DOmkKTlXTAslZZoS85RNr8aAnRmD20E4GEbN0SrTm9kqc7TK0ASpEu1-pmFS8OMwmGgdHtW7kGSb1rv_F_wCH99zeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338194877</pqid></control><display><type>article</type><title>Ripple mediated surface enhanced Raman spectroscopy on graphene</title><source>Access via ScienceDirect (Elsevier)</source><creator>Prasad, Alisha ; Chaichi, Ardalan ; Mahigir, Amirreza ; Sahu, Sushant P. ; Ganta, Deepak ; Veronis, Georgios ; Gartia, Manas Ranjan</creator><creatorcontrib>Prasad, Alisha ; Chaichi, Ardalan ; Mahigir, Amirreza ; Sahu, Sushant P. ; Ganta, Deepak ; Veronis, Georgios ; Gartia, Manas Ranjan</creatorcontrib><description>Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.09.078</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Carbon ; Charge transfer ; Core-shell structure ; Density functional theory ; Electromagnetic absorption ; Electromagnetic fields ; Excitation ; Finite difference method ; Finite-difference time-domain ; Gold ; Graphene ; Infrared radiation ; Optoelectronics ; Organic chemistry ; Quantum mechanics ; Raman spectra ; Raman spectroscopy ; Rhodamine 6G ; Scattering ; Scattering cross sections ; Silver ; Single layer graphene ; Spectrum analysis ; Substrates ; Surface-enhanced Raman spectroscopy</subject><ispartof>Carbon (New York), 2020-02, Vol.157, p.525-536</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</citedby><cites>FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</cites><orcidid>0000-0002-2583-7427 ; 0000-0002-0000-3637 ; 0000-0001-6243-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.09.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Prasad, Alisha</creatorcontrib><creatorcontrib>Chaichi, Ardalan</creatorcontrib><creatorcontrib>Mahigir, Amirreza</creatorcontrib><creatorcontrib>Sahu, Sushant P.</creatorcontrib><creatorcontrib>Ganta, Deepak</creatorcontrib><creatorcontrib>Veronis, Georgios</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><title>Ripple mediated surface enhanced Raman spectroscopy on graphene</title><title>Carbon (New York)</title><description>Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering. [Display omitted]</description><subject>Anisotropy</subject><subject>Carbon</subject><subject>Charge transfer</subject><subject>Core-shell structure</subject><subject>Density functional theory</subject><subject>Electromagnetic absorption</subject><subject>Electromagnetic fields</subject><subject>Excitation</subject><subject>Finite difference method</subject><subject>Finite-difference time-domain</subject><subject>Gold</subject><subject>Graphene</subject><subject>Infrared radiation</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Quantum mechanics</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Rhodamine 6G</subject><subject>Scattering</subject><subject>Scattering cross sections</subject><subject>Silver</subject><subject>Single layer graphene</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface-enhanced Raman spectroscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAQDaLgevkDHwo-tyZN2iQviizeYEFY9DlM06mbstvUpCvs35ulPgsHhrmcmTmHkBtGC0ZZfdcXFkLjh6KkTBc0QaoTsmBK8pwrzU7JglKq8ros-Tm5iLFPqVBMLMjD2o3jFrMdtg4mbLO4Dx1YzHDYwGBTYQ07GLI4op2Cj9aPh8wP2VeAcYMDXpGzDrYRr__iJfl8fvpYvuar95e35eMqt1zRKbeV1tCKBhqNZUUVWF51LQdQtWZadpLTqsOqbQXjtOZSQ9dwxeumEaldMX5Jbue9Y_Dfe4yT6f0-DOmkKTlXTAslZZoS85RNr8aAnRmD20E4GEbN0SrTm9kqc7TK0ASpEu1-pmFS8OMwmGgdHtW7kGSb1rv_F_wCH99zeQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Prasad, Alisha</creator><creator>Chaichi, Ardalan</creator><creator>Mahigir, Amirreza</creator><creator>Sahu, Sushant P.</creator><creator>Ganta, Deepak</creator><creator>Veronis, Georgios</creator><creator>Gartia, Manas Ranjan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2583-7427</orcidid><orcidid>https://orcid.org/0000-0002-0000-3637</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid></search><sort><creationdate>202002</creationdate><title>Ripple mediated surface enhanced Raman spectroscopy on graphene</title><author>Prasad, Alisha ; Chaichi, Ardalan ; Mahigir, Amirreza ; Sahu, Sushant P. ; Ganta, Deepak ; Veronis, Georgios ; Gartia, Manas Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c599ad4bab9e2508ac35fd3aa869197f7305fe5dd41306379afb3836bb4197513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Carbon</topic><topic>Charge transfer</topic><topic>Core-shell structure</topic><topic>Density functional theory</topic><topic>Electromagnetic absorption</topic><topic>Electromagnetic fields</topic><topic>Excitation</topic><topic>Finite difference method</topic><topic>Finite-difference time-domain</topic><topic>Gold</topic><topic>Graphene</topic><topic>Infrared radiation</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Quantum mechanics</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Rhodamine 6G</topic><topic>Scattering</topic><topic>Scattering cross sections</topic><topic>Silver</topic><topic>Single layer graphene</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface-enhanced Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Alisha</creatorcontrib><creatorcontrib>Chaichi, Ardalan</creatorcontrib><creatorcontrib>Mahigir, Amirreza</creatorcontrib><creatorcontrib>Sahu, Sushant P.</creatorcontrib><creatorcontrib>Ganta, Deepak</creatorcontrib><creatorcontrib>Veronis, Georgios</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Alisha</au><au>Chaichi, Ardalan</au><au>Mahigir, Amirreza</au><au>Sahu, Sushant P.</au><au>Ganta, Deepak</au><au>Veronis, Georgios</au><au>Gartia, Manas Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ripple mediated surface enhanced Raman spectroscopy on graphene</atitle><jtitle>Carbon (New York)</jtitle><date>2020-02</date><risdate>2020</risdate><volume>157</volume><spage>525</spage><epage>536</epage><pages>525-536</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Surface-enhanced Raman spectroscopy (SERS) has single molecule level bio-chemical detection capabilities. Single layer graphene on SERS substrates shows modest enhancement factor (EF) (∼10) primarily from chemical enhancement (CE) mechanism. Improvement in EF will have significant impact on applications of graphene in optoelectronics. This limitation is caused by poor interaction of visible light at near infrared frequencies with graphene monolayers. We report an assembly of single-layer graphene (SLG) on a three-dimensional (3D) Au@Ag, core-shell structure that enhances light-matter interactions and modulates light absorption in graphene due to formation of graphene ripples. We demonstrate a SERS EF of ∼1,000 using 633 nm excitation laser with the designed SLG/SERS substrate. The Raman scattering cross-section of R6G molecule was found to be enhanced by a factor of ∼102–103, and limit of detection obtained was 100 pM using the SERS substrate. The enhancement is primarily due to increase in polarizability and anisotropy from rippled graphene substrate. The finite-difference-time-domain electromagnetic simulation showed enhancement of local electromagnetic field leading to enhanced excitation of the molecule. Density functional theory based quantum mechanical simulation studies showed the charge transfer from graphene-to-R6G molecule, leading to enhanced emission of Raman scattering. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.09.078</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2583-7427</orcidid><orcidid>https://orcid.org/0000-0002-0000-3637</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-02, Vol.157, p.525-536
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2338194877
source Access via ScienceDirect (Elsevier)
subjects Anisotropy
Carbon
Charge transfer
Core-shell structure
Density functional theory
Electromagnetic absorption
Electromagnetic fields
Excitation
Finite difference method
Finite-difference time-domain
Gold
Graphene
Infrared radiation
Optoelectronics
Organic chemistry
Quantum mechanics
Raman spectra
Raman spectroscopy
Rhodamine 6G
Scattering
Scattering cross sections
Silver
Single layer graphene
Spectrum analysis
Substrates
Surface-enhanced Raman spectroscopy
title Ripple mediated surface enhanced Raman spectroscopy on graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ripple%20mediated%20surface%20enhanced%20Raman%20spectroscopy%20on%20graphene&rft.jtitle=Carbon%20(New%20York)&rft.au=Prasad,%20Alisha&rft.date=2020-02&rft.volume=157&rft.spage=525&rft.epage=536&rft.pages=525-536&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.09.078&rft_dat=%3Cproquest_cross%3E2338194877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338194877&rft_id=info:pmid/&rft_els_id=S0008622319309923&rfr_iscdi=true