Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds
Microstructure of laser welds of the X70 low-carbon pipe steel was studied. High cooling rates after laser welding and non-uniform distribution of carbon in the ferrite-pearlite base metal caused formation of regions with increased microhardness (up to 650 НV) in inter-critical heat affected zone (I...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-01, Vol.770, p.138522, Article 138522 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 138522 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 770 |
creator | Derevyagina, L.S. Gordienko, A.I. Orishich, А.М. Malikov, A.G. Surikova, N.S. Volochaev, M.N. |
description | Microstructure of laser welds of the X70 low-carbon pipe steel was studied. High cooling rates after laser welding and non-uniform distribution of carbon in the ferrite-pearlite base metal caused formation of regions with increased microhardness (up to 650 НV) in inter-critical heat affected zone (ICHAZ). These regions consisted of finely dispersed degenerate upper bainite and martensite-austenite constituents of a slender shape and small fraction of a massive shape along the boundaries of bainite laths, as well as twinned martensite. High concentration of martensite-austenite constituents (10–16%) and residual stresses in ICHAZ, as well as a dendritic martensitic structure with carbide interlayers along the boundaries of martensite laths in fusion zone were the main reasons of sharp decrease in charpy impact energy of the welded samples. High microhardness of the laser welds was decreased down to 320 HV and their brittleness was improved by annealing. Also, in ICHAZ, degenerate upper bainite and the regions of martensite-austenite constituents decayed forming tempered sorbite and Fe2C and Fe3C carbides, respectively. Charpy impact energy of the welds doubled after annealing compared to the welds without annealing, and ductile-brittle transition temperature decreased down to –60°С. |
doi_str_mv | 10.1016/j.msea.2019.138522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338139615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319313085</els_id><sourcerecordid>2338139615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-bc5dca1a3c0b8435ccc0bf0923f66a04e84e25ceba8cb49c842718c28bee2a963</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxBzhZ4pziR5I6EhdU8ZKKuMDZcjYb6iiNi-2Ayq_HUThz2j3MzM5-hFxxtuSMlzfdchfQLAXj1ZJLVQhxRBZcrWSWV7I8JgtWCZ4VrJKn5CyEjjHGc1YsSP1iwbsQ_Qhx9EhdS-0Q0YO30YLp6RZNpKZtESI29McNSM3Q0OjGj-2AIUyO3ZRh-t4dkiRExJ72JqCn39g34YKctKYPePk3z8n7w_3b-inbvD4-r-82GUihYlZD0YDhRgKrVS4LgLS0qbdsy9KwHFWOogCsjYI6r0DlYsUVCFUjClOV8pxcz7l77z5HDFF3bvRDOqmFlIrLquRFUolZNb0dPLZ67-3O-IPmTE8sdacnlnpiqWeWyXQ7mzD1_7LodQCLA2BjfQKjG2f_s_8Cold_Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338139615</pqid></control><display><type>article</type><title>Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Derevyagina, L.S. ; Gordienko, A.I. ; Orishich, А.М. ; Malikov, A.G. ; Surikova, N.S. ; Volochaev, M.N.</creator><creatorcontrib>Derevyagina, L.S. ; Gordienko, A.I. ; Orishich, А.М. ; Malikov, A.G. ; Surikova, N.S. ; Volochaev, M.N.</creatorcontrib><description>Microstructure of laser welds of the X70 low-carbon pipe steel was studied. High cooling rates after laser welding and non-uniform distribution of carbon in the ferrite-pearlite base metal caused formation of regions with increased microhardness (up to 650 НV) in inter-critical heat affected zone (ICHAZ). These regions consisted of finely dispersed degenerate upper bainite and martensite-austenite constituents of a slender shape and small fraction of a massive shape along the boundaries of bainite laths, as well as twinned martensite. High concentration of martensite-austenite constituents (10–16%) and residual stresses in ICHAZ, as well as a dendritic martensitic structure with carbide interlayers along the boundaries of martensite laths in fusion zone were the main reasons of sharp decrease in charpy impact energy of the welded samples. High microhardness of the laser welds was decreased down to 320 HV and their brittleness was improved by annealing. Also, in ICHAZ, degenerate upper bainite and the regions of martensite-austenite constituents decayed forming tempered sorbite and Fe2C and Fe3C carbides, respectively. Charpy impact energy of the welds doubled after annealing compared to the welds without annealing, and ductile-brittle transition temperature decreased down to –60°С.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138522</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Austenite ; Bainite ; Base metal ; Boundaries ; Cementite ; Cooling rate ; Dendritic structure ; Ductile-brittle transition ; Heat affected zone ; Heat treating ; High strength low alloy steels ; Impact strength ; Interlayers ; Iron carbides ; Iron constituents ; Laser beam welding ; Laser cooling ; Laser welding ; Lasers ; Low carbon steels ; Low-carbon steel ; Martensite ; Microhardness ; Microstructure ; Pearlite ; Residual stress ; Structure ; Toughness ; Transition temperature ; Welded joints</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-01, Vol.770, p.138522, Article 138522</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-bc5dca1a3c0b8435ccc0bf0923f66a04e84e25ceba8cb49c842718c28bee2a963</citedby><cites>FETCH-LOGICAL-c328t-bc5dca1a3c0b8435ccc0bf0923f66a04e84e25ceba8cb49c842718c28bee2a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509319313085$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Derevyagina, L.S.</creatorcontrib><creatorcontrib>Gordienko, A.I.</creatorcontrib><creatorcontrib>Orishich, А.М.</creatorcontrib><creatorcontrib>Malikov, A.G.</creatorcontrib><creatorcontrib>Surikova, N.S.</creatorcontrib><creatorcontrib>Volochaev, M.N.</creatorcontrib><title>Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Microstructure of laser welds of the X70 low-carbon pipe steel was studied. High cooling rates after laser welding and non-uniform distribution of carbon in the ferrite-pearlite base metal caused formation of regions with increased microhardness (up to 650 НV) in inter-critical heat affected zone (ICHAZ). These regions consisted of finely dispersed degenerate upper bainite and martensite-austenite constituents of a slender shape and small fraction of a massive shape along the boundaries of bainite laths, as well as twinned martensite. High concentration of martensite-austenite constituents (10–16%) and residual stresses in ICHAZ, as well as a dendritic martensitic structure with carbide interlayers along the boundaries of martensite laths in fusion zone were the main reasons of sharp decrease in charpy impact energy of the welded samples. High microhardness of the laser welds was decreased down to 320 HV and their brittleness was improved by annealing. Also, in ICHAZ, degenerate upper bainite and the regions of martensite-austenite constituents decayed forming tempered sorbite and Fe2C and Fe3C carbides, respectively. Charpy impact energy of the welds doubled after annealing compared to the welds without annealing, and ductile-brittle transition temperature decreased down to –60°С.</description><subject>Annealing</subject><subject>Austenite</subject><subject>Bainite</subject><subject>Base metal</subject><subject>Boundaries</subject><subject>Cementite</subject><subject>Cooling rate</subject><subject>Dendritic structure</subject><subject>Ductile-brittle transition</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>High strength low alloy steels</subject><subject>Impact strength</subject><subject>Interlayers</subject><subject>Iron carbides</subject><subject>Iron constituents</subject><subject>Laser beam welding</subject><subject>Laser cooling</subject><subject>Laser welding</subject><subject>Lasers</subject><subject>Low carbon steels</subject><subject>Low-carbon steel</subject><subject>Martensite</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Pearlite</subject><subject>Residual stress</subject><subject>Structure</subject><subject>Toughness</subject><subject>Transition temperature</subject><subject>Welded joints</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEuXxBzhZ4pziR5I6EhdU8ZKKuMDZcjYb6iiNi-2Ayq_HUThz2j3MzM5-hFxxtuSMlzfdchfQLAXj1ZJLVQhxRBZcrWSWV7I8JgtWCZ4VrJKn5CyEjjHGc1YsSP1iwbsQ_Qhx9EhdS-0Q0YO30YLp6RZNpKZtESI29McNSM3Q0OjGj-2AIUyO3ZRh-t4dkiRExJ72JqCn39g34YKctKYPePk3z8n7w_3b-inbvD4-r-82GUihYlZD0YDhRgKrVS4LgLS0qbdsy9KwHFWOogCsjYI6r0DlYsUVCFUjClOV8pxcz7l77z5HDFF3bvRDOqmFlIrLquRFUolZNb0dPLZ67-3O-IPmTE8sdacnlnpiqWeWyXQ7mzD1_7LodQCLA2BjfQKjG2f_s_8Cold_Tw</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Derevyagina, L.S.</creator><creator>Gordienko, A.I.</creator><creator>Orishich, А.М.</creator><creator>Malikov, A.G.</creator><creator>Surikova, N.S.</creator><creator>Volochaev, M.N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200107</creationdate><title>Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds</title><author>Derevyagina, L.S. ; Gordienko, A.I. ; Orishich, А.М. ; Malikov, A.G. ; Surikova, N.S. ; Volochaev, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-bc5dca1a3c0b8435ccc0bf0923f66a04e84e25ceba8cb49c842718c28bee2a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annealing</topic><topic>Austenite</topic><topic>Bainite</topic><topic>Base metal</topic><topic>Boundaries</topic><topic>Cementite</topic><topic>Cooling rate</topic><topic>Dendritic structure</topic><topic>Ductile-brittle transition</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>High strength low alloy steels</topic><topic>Impact strength</topic><topic>Interlayers</topic><topic>Iron carbides</topic><topic>Iron constituents</topic><topic>Laser beam welding</topic><topic>Laser cooling</topic><topic>Laser welding</topic><topic>Lasers</topic><topic>Low carbon steels</topic><topic>Low-carbon steel</topic><topic>Martensite</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Pearlite</topic><topic>Residual stress</topic><topic>Structure</topic><topic>Toughness</topic><topic>Transition temperature</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derevyagina, L.S.</creatorcontrib><creatorcontrib>Gordienko, A.I.</creatorcontrib><creatorcontrib>Orishich, А.М.</creatorcontrib><creatorcontrib>Malikov, A.G.</creatorcontrib><creatorcontrib>Surikova, N.S.</creatorcontrib><creatorcontrib>Volochaev, M.N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derevyagina, L.S.</au><au>Gordienko, A.I.</au><au>Orishich, А.М.</au><au>Malikov, A.G.</au><au>Surikova, N.S.</au><au>Volochaev, M.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-01-07</date><risdate>2020</risdate><volume>770</volume><spage>138522</spage><pages>138522-</pages><artnum>138522</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Microstructure of laser welds of the X70 low-carbon pipe steel was studied. High cooling rates after laser welding and non-uniform distribution of carbon in the ferrite-pearlite base metal caused formation of regions with increased microhardness (up to 650 НV) in inter-critical heat affected zone (ICHAZ). These regions consisted of finely dispersed degenerate upper bainite and martensite-austenite constituents of a slender shape and small fraction of a massive shape along the boundaries of bainite laths, as well as twinned martensite. High concentration of martensite-austenite constituents (10–16%) and residual stresses in ICHAZ, as well as a dendritic martensitic structure with carbide interlayers along the boundaries of martensite laths in fusion zone were the main reasons of sharp decrease in charpy impact energy of the welded samples. High microhardness of the laser welds was decreased down to 320 HV and their brittleness was improved by annealing. Also, in ICHAZ, degenerate upper bainite and the regions of martensite-austenite constituents decayed forming tempered sorbite and Fe2C and Fe3C carbides, respectively. Charpy impact energy of the welds doubled after annealing compared to the welds without annealing, and ductile-brittle transition temperature decreased down to –60°С.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138522</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-01, Vol.770, p.138522, Article 138522 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2338139615 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Annealing Austenite Bainite Base metal Boundaries Cementite Cooling rate Dendritic structure Ductile-brittle transition Heat affected zone Heat treating High strength low alloy steels Impact strength Interlayers Iron carbides Iron constituents Laser beam welding Laser cooling Laser welding Lasers Low carbon steels Low-carbon steel Martensite Microhardness Microstructure Pearlite Residual stress Structure Toughness Transition temperature Welded joints |
title | Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20of%20intercritical%20heat%20affected%20zone%20and%20toughness%20of%20microalloyed%20steel%20laser%20welds&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Derevyagina,%20L.S.&rft.date=2020-01-07&rft.volume=770&rft.spage=138522&rft.pages=138522-&rft.artnum=138522&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138522&rft_dat=%3Cproquest_cross%3E2338139615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338139615&rft_id=info:pmid/&rft_els_id=S0921509319313085&rfr_iscdi=true |