In-plane breathing and shear modes in low-dimensional nanostructures

We use continuum elasticity theory to revise scaling laws for radial breathing-like and shear-like vibration modes in quasi-2D nanostructures including finite-width nanoribbons and finite-size thin circular discs. Such modes can be observed spectroscopically in corresponding nanostructures of graphe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-02, Vol.157, p.364-370
Hauptverfasser: Liu, Dan, Daniels, Colin, Meunier, Vincent, Every, Arthur G., Tománek, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue
container_start_page 364
container_title Carbon (New York)
container_volume 157
creator Liu, Dan
Daniels, Colin
Meunier, Vincent
Every, Arthur G.
Tománek, David
description We use continuum elasticity theory to revise scaling laws for radial breathing-like and shear-like vibration modes in quasi-2D nanostructures including finite-width nanoribbons and finite-size thin circular discs. Such modes can be observed spectroscopically in corresponding nanostructures of graphene and phosphorene and can be determined numerically by atomistic ab initio density functional theory and classical force-field calculation. The revised scaling laws differ from previously used expressions, some of which display an unphysical asymptotic behavior. Apart from model assumptions describing the effect of edge termination, the continuum scaling laws have no adjustable parameters and display correct asymptotic behavior. These scaling laws yield excellent agreement with experimental and numerical results for vibration frequencies in both isotropic and anisotropic structures as well as useful expressions for the frequency dependence on structure size and edge termination. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.10.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338117491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319310565</els_id><sourcerecordid>2338117491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a5f16e8498862ed7e071a34d29c224ecef22489d5a6bfc5cbe3e8036a66ca96a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcF1615TZpuBBlfAwNudB3S5NZJ6SRj0ir-ezPUtavLPZxzuPdD6JrgimAibvvK6NgGX1FMmixVmJMTtCCyZiWTDTlFC4yxLAWl7BxdpNTnlUvCF-hh48vDoD0UbQQ97pz_KLS3RdqBjsU-WEiF88UQvkvr9uCTC14Phdc-pDFOZpwipEt01ukhwdXfXKL3p8e39Uu5fX3erO-3pWESj6VedUSA5I2UgoKtAddEM25pYyjlYKDLQzZ2pUXbmZVpgYHETGghjG6EZkt0M_ceYvicII2qD1PM9yRFGZOE1Lwh2cVnl4khpQidOkS31_FHEayOvFSvZl7qyOuoZl45djfHIH_w5SCqZBx4A9ZFMKOywf1f8Av3jHXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338117491</pqid></control><display><type>article</type><title>In-plane breathing and shear modes in low-dimensional nanostructures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Dan ; Daniels, Colin ; Meunier, Vincent ; Every, Arthur G. ; Tománek, David</creator><creatorcontrib>Liu, Dan ; Daniels, Colin ; Meunier, Vincent ; Every, Arthur G. ; Tománek, David</creatorcontrib><description>We use continuum elasticity theory to revise scaling laws for radial breathing-like and shear-like vibration modes in quasi-2D nanostructures including finite-width nanoribbons and finite-size thin circular discs. Such modes can be observed spectroscopically in corresponding nanostructures of graphene and phosphorene and can be determined numerically by atomistic ab initio density functional theory and classical force-field calculation. The revised scaling laws differ from previously used expressions, some of which display an unphysical asymptotic behavior. Apart from model assumptions describing the effect of edge termination, the continuum scaling laws have no adjustable parameters and display correct asymptotic behavior. These scaling laws yield excellent agreement with experimental and numerical results for vibration frequencies in both isotropic and anisotropic structures as well as useful expressions for the frequency dependence on structure size and edge termination. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.10.041</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>ab initio ; Asymptotic properties ; Density functional theory ; DFT ; Elasticity ; Graphene ; Graphene nanoribbon ; Nanostructure ; Nanostructured materials ; Phosphorene ; Radial breathing mode ; Raman ; RBM ; Scaling laws ; Spectrum analysis ; Two dimensional materials ; Vibration ; Vibration mode</subject><ispartof>Carbon (New York), 2020-02, Vol.157, p.364-370</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a5f16e8498862ed7e071a34d29c224ecef22489d5a6bfc5cbe3e8036a66ca96a3</citedby><cites>FETCH-LOGICAL-c380t-a5f16e8498862ed7e071a34d29c224ecef22489d5a6bfc5cbe3e8036a66ca96a3</cites><orcidid>0000-0002-5211-4865 ; 0000-0002-7013-179X ; 0000-0003-1131-4788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.10.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Daniels, Colin</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Every, Arthur G.</creatorcontrib><creatorcontrib>Tománek, David</creatorcontrib><title>In-plane breathing and shear modes in low-dimensional nanostructures</title><title>Carbon (New York)</title><description>We use continuum elasticity theory to revise scaling laws for radial breathing-like and shear-like vibration modes in quasi-2D nanostructures including finite-width nanoribbons and finite-size thin circular discs. Such modes can be observed spectroscopically in corresponding nanostructures of graphene and phosphorene and can be determined numerically by atomistic ab initio density functional theory and classical force-field calculation. The revised scaling laws differ from previously used expressions, some of which display an unphysical asymptotic behavior. Apart from model assumptions describing the effect of edge termination, the continuum scaling laws have no adjustable parameters and display correct asymptotic behavior. These scaling laws yield excellent agreement with experimental and numerical results for vibration frequencies in both isotropic and anisotropic structures as well as useful expressions for the frequency dependence on structure size and edge termination. [Display omitted]</description><subject>ab initio</subject><subject>Asymptotic properties</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Elasticity</subject><subject>Graphene</subject><subject>Graphene nanoribbon</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Phosphorene</subject><subject>Radial breathing mode</subject><subject>Raman</subject><subject>RBM</subject><subject>Scaling laws</subject><subject>Spectrum analysis</subject><subject>Two dimensional materials</subject><subject>Vibration</subject><subject>Vibration mode</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcF1615TZpuBBlfAwNudB3S5NZJ6SRj0ir-ezPUtavLPZxzuPdD6JrgimAibvvK6NgGX1FMmixVmJMTtCCyZiWTDTlFC4yxLAWl7BxdpNTnlUvCF-hh48vDoD0UbQQ97pz_KLS3RdqBjsU-WEiF88UQvkvr9uCTC14Phdc-pDFOZpwipEt01ukhwdXfXKL3p8e39Uu5fX3erO-3pWESj6VedUSA5I2UgoKtAddEM25pYyjlYKDLQzZ2pUXbmZVpgYHETGghjG6EZkt0M_ceYvicII2qD1PM9yRFGZOE1Lwh2cVnl4khpQidOkS31_FHEayOvFSvZl7qyOuoZl45djfHIH_w5SCqZBx4A9ZFMKOywf1f8Av3jHXA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Liu, Dan</creator><creator>Daniels, Colin</creator><creator>Meunier, Vincent</creator><creator>Every, Arthur G.</creator><creator>Tománek, David</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5211-4865</orcidid><orcidid>https://orcid.org/0000-0002-7013-179X</orcidid><orcidid>https://orcid.org/0000-0003-1131-4788</orcidid></search><sort><creationdate>202002</creationdate><title>In-plane breathing and shear modes in low-dimensional nanostructures</title><author>Liu, Dan ; Daniels, Colin ; Meunier, Vincent ; Every, Arthur G. ; Tománek, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a5f16e8498862ed7e071a34d29c224ecef22489d5a6bfc5cbe3e8036a66ca96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ab initio</topic><topic>Asymptotic properties</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Elasticity</topic><topic>Graphene</topic><topic>Graphene nanoribbon</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Phosphorene</topic><topic>Radial breathing mode</topic><topic>Raman</topic><topic>RBM</topic><topic>Scaling laws</topic><topic>Spectrum analysis</topic><topic>Two dimensional materials</topic><topic>Vibration</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Daniels, Colin</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Every, Arthur G.</creatorcontrib><creatorcontrib>Tománek, David</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dan</au><au>Daniels, Colin</au><au>Meunier, Vincent</au><au>Every, Arthur G.</au><au>Tománek, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-plane breathing and shear modes in low-dimensional nanostructures</atitle><jtitle>Carbon (New York)</jtitle><date>2020-02</date><risdate>2020</risdate><volume>157</volume><spage>364</spage><epage>370</epage><pages>364-370</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We use continuum elasticity theory to revise scaling laws for radial breathing-like and shear-like vibration modes in quasi-2D nanostructures including finite-width nanoribbons and finite-size thin circular discs. Such modes can be observed spectroscopically in corresponding nanostructures of graphene and phosphorene and can be determined numerically by atomistic ab initio density functional theory and classical force-field calculation. The revised scaling laws differ from previously used expressions, some of which display an unphysical asymptotic behavior. Apart from model assumptions describing the effect of edge termination, the continuum scaling laws have no adjustable parameters and display correct asymptotic behavior. These scaling laws yield excellent agreement with experimental and numerical results for vibration frequencies in both isotropic and anisotropic structures as well as useful expressions for the frequency dependence on structure size and edge termination. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.10.041</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5211-4865</orcidid><orcidid>https://orcid.org/0000-0002-7013-179X</orcidid><orcidid>https://orcid.org/0000-0003-1131-4788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-02, Vol.157, p.364-370
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2338117491
source Elsevier ScienceDirect Journals Complete
subjects ab initio
Asymptotic properties
Density functional theory
DFT
Elasticity
Graphene
Graphene nanoribbon
Nanostructure
Nanostructured materials
Phosphorene
Radial breathing mode
Raman
RBM
Scaling laws
Spectrum analysis
Two dimensional materials
Vibration
Vibration mode
title In-plane breathing and shear modes in low-dimensional nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A27%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-plane%20breathing%20and%20shear%20modes%20in%20low-dimensional%20nanostructures&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Dan&rft.date=2020-02&rft.volume=157&rft.spage=364&rft.epage=370&rft.pages=364-370&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.10.041&rft_dat=%3Cproquest_cross%3E2338117491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338117491&rft_id=info:pmid/&rft_els_id=S0008622319310565&rfr_iscdi=true