Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais
In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French ann...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mazoyer, Béatrice Nicolas, Hervé Hudelot, Céline Cage, Julia |
description | In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2337683314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337683314</sourcerecordid><originalsourceid>FETCH-proquest_journals_23376833143</originalsourceid><addsrcrecordid>eNqNj0FqwzAQRUUgUNPkDgNZZGVw5dgJ3ZaUrkv2QVjj4KDKikZyfIzeougculinkAN0Mcz8-cNj_kIUsq5fysNOyiexJrpWVSXbvWyauhDfn-h8ToQ2qDCMlsDgPHTKIIEbowejQOcUsPtzwXJRdOingXJC0NucppwsfjGAQCsGRAu9iTNohHBH5PUrMCGyJgZqJnejd5Gg98rmHzUQYABlL4bHlVj2yhCuH_1ZbN6Pp7eP0vnxFpHC-cpvWbbOHGvfHjjbrv7f1S-EKFvy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337683314</pqid></control><display><type>article</type><title>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</title><source>Freely Accessible Journals</source><creator>Mazoyer, Béatrice ; Nicolas, Hervé ; Hudelot, Céline ; Cage, Julia</creator><creatorcontrib>Mazoyer, Béatrice ; Nicolas, Hervé ; Hudelot, Céline ; Cage, Julia</creatorcontrib><description>In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Coders ; Neural networks</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Mazoyer, Béatrice</creatorcontrib><creatorcontrib>Nicolas, Hervé</creatorcontrib><creatorcontrib>Hudelot, Céline</creatorcontrib><creatorcontrib>Cage, Julia</creatorcontrib><title>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</title><title>arXiv.org</title><description>In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.</description><subject>Clustering</subject><subject>Coders</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNj0FqwzAQRUUgUNPkDgNZZGVw5dgJ3ZaUrkv2QVjj4KDKikZyfIzeougculinkAN0Mcz8-cNj_kIUsq5fysNOyiexJrpWVSXbvWyauhDfn-h8ToQ2qDCMlsDgPHTKIIEbowejQOcUsPtzwXJRdOingXJC0NucppwsfjGAQCsGRAu9iTNohHBH5PUrMCGyJgZqJnejd5Gg98rmHzUQYABlL4bHlVj2yhCuH_1ZbN6Pp7eP0vnxFpHC-cpvWbbOHGvfHjjbrv7f1S-EKFvy</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Mazoyer, Béatrice</creator><creator>Nicolas, Hervé</creator><creator>Hudelot, Céline</creator><creator>Cage, Julia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200113</creationdate><title>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</title><author>Mazoyer, Béatrice ; Nicolas, Hervé ; Hudelot, Céline ; Cage, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23376833143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Coders</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazoyer, Béatrice</creatorcontrib><creatorcontrib>Nicolas, Hervé</creatorcontrib><creatorcontrib>Hudelot, Céline</creatorcontrib><creatorcontrib>Cage, Julia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazoyer, Béatrice</au><au>Nicolas, Hervé</au><au>Hudelot, Céline</au><au>Cage, Julia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</atitle><jtitle>arXiv.org</jtitle><date>2020-01-13</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2337683314 |
source | Freely Accessible Journals |
subjects | Clustering Coders Neural networks |
title | Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Repr%C3%A9sentations%20lexicales%20pour%20la%20d%C3%A9tection%20non%20supervis%C3%A9e%20d'%C3%A9v%C3%A9nements%20dans%20un%20flux%20de%20tweets%20:%20%C3%A9tude%20sur%20des%20corpus%20fran%C3%A7ais%20et%20anglais&rft.jtitle=arXiv.org&rft.au=Mazoyer,%20B%C3%A9atrice&rft.date=2020-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2337683314%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337683314&rft_id=info:pmid/&rfr_iscdi=true |