Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais

In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French ann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
Hauptverfasser: Mazoyer, Béatrice, Nicolas, Hervé, Hudelot, Céline, Cage, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mazoyer, Béatrice
Nicolas, Hervé
Hudelot, Céline
Cage, Julia
description In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2337683314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337683314</sourcerecordid><originalsourceid>FETCH-proquest_journals_23376833143</originalsourceid><addsrcrecordid>eNqNj0FqwzAQRUUgUNPkDgNZZGVw5dgJ3ZaUrkv2QVjj4KDKikZyfIzeougculinkAN0Mcz8-cNj_kIUsq5fysNOyiexJrpWVSXbvWyauhDfn-h8ToQ2qDCMlsDgPHTKIIEbowejQOcUsPtzwXJRdOingXJC0NucppwsfjGAQCsGRAu9iTNohHBH5PUrMCGyJgZqJnejd5Gg98rmHzUQYABlL4bHlVj2yhCuH_1ZbN6Pp7eP0vnxFpHC-cpvWbbOHGvfHjjbrv7f1S-EKFvy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337683314</pqid></control><display><type>article</type><title>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</title><source>Freely Accessible Journals</source><creator>Mazoyer, Béatrice ; Nicolas, Hervé ; Hudelot, Céline ; Cage, Julia</creator><creatorcontrib>Mazoyer, Béatrice ; Nicolas, Hervé ; Hudelot, Céline ; Cage, Julia</creatorcontrib><description>In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Coders ; Neural networks</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Mazoyer, Béatrice</creatorcontrib><creatorcontrib>Nicolas, Hervé</creatorcontrib><creatorcontrib>Hudelot, Céline</creatorcontrib><creatorcontrib>Cage, Julia</creatorcontrib><title>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</title><title>arXiv.org</title><description>In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.</description><subject>Clustering</subject><subject>Coders</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNj0FqwzAQRUUgUNPkDgNZZGVw5dgJ3ZaUrkv2QVjj4KDKikZyfIzeougculinkAN0Mcz8-cNj_kIUsq5fysNOyiexJrpWVSXbvWyauhDfn-h8ToQ2qDCMlsDgPHTKIIEbowejQOcUsPtzwXJRdOingXJC0NucppwsfjGAQCsGRAu9iTNohHBH5PUrMCGyJgZqJnejd5Gg98rmHzUQYABlL4bHlVj2yhCuH_1ZbN6Pp7eP0vnxFpHC-cpvWbbOHGvfHjjbrv7f1S-EKFvy</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Mazoyer, Béatrice</creator><creator>Nicolas, Hervé</creator><creator>Hudelot, Céline</creator><creator>Cage, Julia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200113</creationdate><title>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</title><author>Mazoyer, Béatrice ; Nicolas, Hervé ; Hudelot, Céline ; Cage, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23376833143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Coders</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazoyer, Béatrice</creatorcontrib><creatorcontrib>Nicolas, Hervé</creatorcontrib><creatorcontrib>Hudelot, Céline</creatorcontrib><creatorcontrib>Cage, Julia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazoyer, Béatrice</au><au>Nicolas, Hervé</au><au>Hudelot, Céline</au><au>Cage, Julia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais</atitle><jtitle>arXiv.org</jtitle><date>2020-01-13</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work, we evaluate the performance of recent text embeddings for the automatic detection of events in a stream of tweets. We model this task as a dynamic clustering problem.Our experiments are conducted on a publicly available corpus of tweets in English and on a similar dataset in French annotated by our team. We show that recent techniques based on deep neural networks (ELMo, Universal Sentence Encoder, BERT, SBERT), although promising on many applications, are not very suitable for this task. We also experiment with different types of fine-tuning to improve these results on French data. Finally, we propose a detailed analysis of the results obtained, showing the superiority of tf-idf approaches for this task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2337683314
source Freely Accessible Journals
subjects Clustering
Coders
Neural networks
title Représentations lexicales pour la détection non supervisée d'événements dans un flux de tweets : étude sur des corpus français et anglais
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Repr%C3%A9sentations%20lexicales%20pour%20la%20d%C3%A9tection%20non%20supervis%C3%A9e%20d'%C3%A9v%C3%A9nements%20dans%20un%20flux%20de%20tweets%20:%20%C3%A9tude%20sur%20des%20corpus%20fran%C3%A7ais%20et%20anglais&rft.jtitle=arXiv.org&rft.au=Mazoyer,%20B%C3%A9atrice&rft.date=2020-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2337683314%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337683314&rft_id=info:pmid/&rfr_iscdi=true